Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomolecules ; 14(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39062509

RESUMEN

Cry toxins, produced by the bacterium Bacillus thuringiensis, are of significant agronomic value worldwide due to their potent and highly specific activity against various insect orders. However, some of these pore-forming toxins display specific activity against a range of human cancer cells whilst possessing no known insecticidal activity; Cry41Aa is one such toxin. Cry41Aa has similarities to its insecticidal counterparts in both its 3-domain toxic core structure and pore-forming abilities, but how it has evolved to target human cells is a mystery. This work shows that some insecticidal Cry toxins can enhance the toxicity of Cry41Aa against hepatocellular carcinoma cells, despite possessing no intrinsic toxicity themselves. This interesting crossover is not limited to human cancer cells, as Cry41Aa was found to inhibit some Aedes-active Cry toxins in mosquito larval assays. Here, we present findings that suggest that Cry41Aa shares a receptor with several insecticidal toxins, indicating a stronger evolutionary relationship than their divergent activities might suggest.


Asunto(s)
Toxinas de Bacillus thuringiensis , Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Humanos , Endotoxinas/química , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Animales , Insecticidas/química , Insecticidas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Aedes/efectos de los fármacos , Aedes/genética , Línea Celular Tumoral
2.
Biochem J ; 479(23): 2395-2417, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36383217

RESUMEN

The cancer-associated Epstein-Barr virus (EBV) latently infects and immortalises B lymphocytes. EBV latent membrane protein 2A and EBV-encoded microRNAs are known to manipulate B cell receptor signalling to control cell growth and survival and suppress lytic replication. Here, we show that the EBV transcription factors EBNA2, 3A, 3B and 3C bind to genomic sites around multiple B cell receptor (BCR) pathway genes, regulate their expression and affect BCR signalling. EBNA2 regulates the majority of BCR pathway genes associated with binding sites, where EBNA3 proteins regulate only 42% of targets predicted by binding. Both EBNA2 and 3 proteins predominantly repress BCR pathway gene expression and target some common genes. EBNA2 and at least one EBNA3 protein repress the central BCR components CD79A and CD79B and the downstream genes BLNK, CD22, CD72, NFATC1, PIK3CG and RASGRP3. Studying repression of CD79B, we show that EBNA2 decreases transcription by disrupting binding of Early B cell Factor-1 to the CD79B promoter. Consistent with repression of BCR signalling, we demonstrate that EBNA2 and EBNA3 proteins suppress the basal or active BCR signalling that culminates in NFAT activation. Additionally, we show that EBNA2, EBNA3A and EBNA3C expression can result in reductions in the active serine 473 phosphorylated form of Akt in certain cell contexts, consistent with transcriptional repression of the PI3K-Akt BCR signalling arm. Overall, we identify EBNA2, EBNA3A and EBNA3C-mediated transcription control of BCR signalling as an additional strategy through which EBV may control the growth and survival of infected B cells and maintain viral latency.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Antígenos Nucleares del Virus de Epstein-Barr , Humanos , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/genética , Fosfatidilinositol 3-Quinasas , Receptores de Antígenos de Linfocitos B/genética
3.
Hematol Oncol ; 40(3): 417-429, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35544413

RESUMEN

B-cell progenitor fate determinant interferon regulatory factor 4 (IRF4) exerts key roles in the pathogenesis and progression of multiple myeloma (MM), a currently incurable plasma cell malignancy. Aberrant expression of IRF4 and the establishment of a positive auto-regulatory loop with oncogene MYC, drives a MM specific gene-expression program leading to the abnormal expansion of malignant immature plasma cells. Targeting the IRF4-MYC oncogenic loop has the potential to provide a selective and effective therapy for MM. Here we evaluate the use of bromodomain inhibitors to target the IRF4-MYC axis through combined inhibition of their known epigenetic regulators, BRD4 and CBP/EP300. Although all inhibitors induced cell death, we found no synergistic effect of targeting both of these regulators on the viability of MM cell-lines. Importantly, for all inhibitors over a time period up to 72 h, we detected reduced IRF4 mRNA, but a limited decrease in IRF4 protein expression or mRNA levels of downstream target genes. This indicates that inhibitor-induced loss of cell viability is not mediated through reduced IRF4 protein expression, as previously proposed. Further analysis revealed a long half-life of IRF4 protein in MM cells. In support of our experimental observations, gene network modeling of MM suggests that bromodomain inhibition is exerted primarily through MYC and not IRF4. These findings suggest that despite the autofeedback positive regulatory loop between IRF4 and MYC, bromodomain inhibitors are not effective at targeting IRF4 in MM and that novel therapeutic strategies should focus on the direct inhibition or degradation of IRF4.


Asunto(s)
Factores Reguladores del Interferón , Mieloma Múltiple , Proteínas Proto-Oncogénicas c-myc , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacología , Proteínas de Ciclo Celular/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Toxins (Basel) ; 14(5)2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35622566

RESUMEN

Cry41Aa, also called parasporin-3, belongs to a group of toxins from the entomopathogenic bacterium Bacillus thuringiensis that show activity against human cancer cells. Cry41Aa exhibits preferential cytocidal activity towards HL-60 (human promyelocytic leukaemia cells) and HepG2 (human liver cancer cells) cell lines after being proteolytically activated. To better understand the mechanism of action of Cry41Aa, we evolved resistance in HepG2 cells through repeated exposure to increasing doses of the toxin. Concentrations of Cry41Aa that killed over 50% of the parental HepG2 cells had no significant effect on the viability of the resistant cells and did not induce either pore formation or p38 phosphorylation (both characteristic features of pore-forming toxins). Preliminary RNA sequencing data identified AQP9 as a potential mediator of resistance, but extensive investigations failed to show a causal link and did not support an enhanced cell repair process as the resistance mechanism.


Asunto(s)
Bacillus thuringiensis , Proteínas Bacterianas , Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/genética , Células HL-60 , Células Hep G2 , Humanos
5.
Biochem J ; 476(24): 3805-3816, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31794004

RESUMEN

Bacillus thuringiensis (Bt) is a gram positive spore forming bacterium which produces intracellular protein crystals toxic to a wide variety of insect larvae and is the most commonly used biological pesticide worldwide. More recently, Bt crystal proteins known as parasporins have been discovered, that have no known insecticidal activity but target some human cancer cells exhibiting strong cytocidal activities with different toxicity spectra and varied activity levels. Parasporin-3, also called Cry41Aa, has only been shown to exhibit cytocidal activity towards HL-60 (Human promyelocytic leukemia cells) and HepG2 (Human liver cancer cells) cell lines after being proteolytically cleaved. In order to understand this activation mechanism various mutations were made in the N-terminal region of the protein and the toxicity against both HepG2 and HL-60 cell lines was evaluated. Our results indicate that only N-terminal cleavage is required for activation and that N-terminally deleted mutants show some toxicity without the need for proteolytic activation. Furthermore, we have shown that the level of toxicity towards the two cell lines depends on the protease used to activate the toxin. Proteinase K-activated toxin was significantly more toxic towards HepG2 and HL-60 than trypsin-activated toxin. N-terminal sequencing of activated toxins showed that this difference in toxicity is associated with a difference of just two amino acids (serine and alanine at positions 59 and 60, respectively) which we hypothesize occlude a binding motif.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Células HL-60 , Células Hep G2 , Humanos , Proteolisis
6.
PLoS Pathog ; 15(7): e1007458, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31283782

RESUMEN

Natural variation separates Epstein-Barr virus (EBV) into type 1 and type 2 strains. Type 2 EBV is less transforming in vitro due to sequence differences in the EBV transcription factor EBNA2. This correlates with reduced activation of the EBV oncogene LMP1 and some cell genes. Transcriptional activation by type 1 EBNA2 can be suppressed through the binding of two PXLXP motifs in its transactivation domain (TAD) to the dimeric coiled-coil MYND domain (CC-MYND) of the BS69 repressor protein (ZMYND11). We identified a third conserved PXLXP motif in type 2 EBNA2. We found that type 2 EBNA2 peptides containing this motif bound BS69CC-MYND efficiently and that the type 2 EBNA2TAD bound an additional BS69CC-MYND molecule. Full-length type 2 EBNA2 also bound BS69 more efficiently in pull-down assays. Molecular weight analysis and low-resolution structures obtained using small-angle X-ray scattering showed that three BS69CC-MYND dimers bound two molecules of type 2 EBNA2TAD, in line with the dimeric state of full-length EBNA2 in vivo. Importantly, mutation of the third BS69 binding motif in type 2 EBNA2 improved B-cell growth maintenance and the transcriptional activation of the LMP1 and CXCR7 genes. Our data indicate that increased association with BS69 restricts the function of type 2 EBNA2 as a transcriptional activator and driver of B cell growth and may contribute to reduced B-cell transformation by type 2 EBV.


Asunto(s)
Proteínas Portadoras/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Linfocitos B/metabolismo , Linfocitos B/virología , Sitios de Unión/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Línea Celular , Transformación Celular Viral/genética , Transformación Celular Viral/fisiología , Proteínas Co-Represoras , Proteínas de Unión al ADN , Antígenos Nucleares del Virus de Epstein-Barr/química , Genes Virales , Herpesvirus Humano 4/clasificación , Herpesvirus Humano 4/patogenicidad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Modelos Moleculares , Mutación , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Virales/química
7.
Toxicon ; 167: 123-133, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31181295

RESUMEN

Bacillus thuringiensis crystal (Cry) proteins, used for decades as insecticidal toxins, are well known to be toxic to certain insects, but not to mammals. A novel group of Cry toxins called parasporins possess a strong cytocidal activity against some human cancer cells. Cry41Aa, or parasporin3, closely resembles commercially used insecticidal toxins and yet is toxic to the human hepatic cancer cell line HepG2, disrupting membranes of susceptible cells, similar to its insecticidal counterparts. In this study, we explore the protective effect that the common divalent metal chelator EGTA exerts on Cry41Aa's activity on HepG2 cells. Our results indicate that rather than interfering with a signalling pathway as a result of chelating cations in the medium, the chelator prevented the toxin's interaction with the membrane, and thus the subsequent steps of membrane damage and p38 phosphorylation, by removing cations bound to plasma membrane components. BAPTA and DTPA also inhibited Cry41Aa toxicity but at higher concentrations. We also show for the first time that Cry41Aa induces pore formation in planar lipid bilayers. This activity is not altered by EGTA, consistent with a biological context of chelation. Salt supplementation assays identified Ca2+, Mn2+ and Zn2+ as being able to reinstate Cry41Aa activity. Our data suggest the existence of one or more metal cation-dependent receptors in the Cry41Aa mechanism of action.


Asunto(s)
Bacillus thuringiensis/química , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Membrana Celular/efectos de los fármacos , Quelantes/farmacología , Ácido Egtácico/farmacología , Membrana Dobles de Lípidos/química , Sustancias Protectoras/farmacología , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Membrana Celular/química , Células Hep G2 , Humanos , Iones , Modelos Moleculares , Técnicas de Placa-Clamp
8.
PLoS Biol ; 16(10): e2005752, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30359362

RESUMEN

The complex life cycle of oncogenic human papillomavirus (HPV) initiates in undifferentiated basal epithelial keratinocytes where expression of the E6 and E7 oncogenes is restricted. Upon epithelial differentiation, E6/E7 transcription is increased through unknown mechanisms to drive cellular proliferation required to support virus replication. We report that the chromatin-organising CCCTC-binding factor (CTCF) promotes the formation of a chromatin loop in the HPV genome that epigenetically represses viral enhancer activity controlling E6/E7 expression. CTCF-dependent looping is dependent on the expression of the CTCF-associated Yin Yang 1 (YY1) transcription factor and polycomb repressor complex (PRC) recruitment, resulting in trimethylation of histone H3 at lysine 27. We show that viral oncogene up-regulation during cellular differentiation results from YY1 down-regulation, disruption of viral genome looping, and a loss of epigenetic repression of viral enhancer activity. Our data therefore reveal a key role for CTCF-YY1-dependent looping in the HPV life cycle and identify a regulatory mechanism that could be disrupted in HPV carcinogenesis.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Papillomaviridae/genética , Factor de Transcripción YY1/metabolismo , Factor de Unión a CCCTC/genética , Diferenciación Celular/genética , Cromatina/fisiología , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Epigénesis Genética/genética , Histonas/genética , Humanos , Regiones Promotoras Genéticas/genética , Proteínas Represoras , Factores de Transcripción , Activación Transcripcional/genética , Replicación Viral/genética , Replicación Viral/fisiología , Factor de Transcripción YY1/genética
9.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021904

RESUMEN

The oncogenic microRNA (miRNA) miR-155 is the most frequently upregulated miRNA in Epstein-Barr virus (EBV)-positive B cell malignancies and is upregulated in other nonviral lymphomas. Both EBV nuclear antigen 2 (EBNA2) and the B cell transcription factor interferon regulatory factor 4 (IRF4) are known to activate transcription of the host cell gene from which miR-155 is processed (miR-155HG; BIC). EBNA2 also activates IRF4 transcription, indicating that EBV may upregulate miR-155 through direct and indirect mechanisms. The mechanism of transcriptional regulation of IRF4 and miR-155HG by EBNA2, however, has not been defined. We demonstrate that EBNA2 can activate IRF4 and miR-155HG expression through specific upstream enhancers that are dependent on the Notch signaling transcription factor RBPJ, a known binding partner of EBNA2. We demonstrate that in addition to the activation of the miR-155HG promoter, IRF4 can also activate miR-155HG via the upstream enhancer also targeted by EBNA2. Gene editing to remove the EBNA2- and IRF4-responsive miR-155HG enhancer located 60 kb upstream of miR-155HG led to reduced miR-155HG expression in EBV-infected cells. Our data therefore demonstrate that specific RBPJ-dependent enhancers regulate the IRF4-miR-155 expression network and play a key role in the maintenance of miR-155 expression in EBV-infected B cells. These findings provide important insights that will improve our understanding of miR-155 control in B cell malignancies.IMPORTANCE MicroRNA miR-155 is expressed at high levels in many human cancers, particularly lymphomas. Epstein-Barr virus (EBV) infects human B cells and drives the development of numerous lymphomas. Two genes carried by EBV (LMP1 and EBNA2) upregulate miR-155 expression, and miR-155 expression is required for the growth of EBV-infected B cells. We show that the EBV transcription factor EBNA2 upregulates miR-155 expression by activating an enhancer upstream from the miR-155 host gene (miR-155HG) from which miR-155 is derived. We show that EBNA2 also indirectly activates miR-155 expression through enhancer-mediated activation of IRF4 IRF4 then activates both the miR-155HG promoter and the upstream enhancer, independently of EBNA2. Gene editing to remove the miR-155HG enhancer leads to a reduction in miR-155HG expression. We therefore identify enhancer-mediated activation of miR-155HG as a critical step in promoting B cell growth and a likely contributor to lymphoma development.


Asunto(s)
Linfocitos B/metabolismo , Elementos de Facilitación Genéticos , Infecciones por Virus de Epstein-Barr/metabolismo , Regulación de la Expresión Génica , Herpesvirus Humano 4/fisiología , MicroARNs/genética , Linfocitos B/patología , Linfocitos B/virología , Células Cultivadas , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Regiones Promotoras Genéticas , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
Nucleic Acids Res ; 46(7): 3707-3725, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29385536

RESUMEN

Response gene to complement-32 (RGC-32) activates cyclin-dependent kinase 1, regulates the cell cycle and is deregulated in many human tumours. We previously showed that RGC-32 expression is upregulated by the cancer-associated Epstein-Barr virus (EBV) in latently infected B cells through the relief of translational repression. We now show that EBV infection of naïve primary B cells also induces RGC-32 protein translation. In EBV-immortalised cell lines, we found that RGC-32 depletion resulted in cell death, indicating a key role in B cell survival. Studying RGC-32 translational control in EBV-infected cells, we found that the RGC-32 3'untranslated region (3'UTR) mediates translational repression. Repression was dependent on a single Pumilio binding element (PBE) adjacent to the polyadenylation signal. Mutation of this PBE did not affect mRNA cleavage, but resulted in increased polyA tail length. Consistent with Pumilio-dependent recruitment of deadenylases, we found that depletion of Pumilio in EBV-infected cells increased RGC-32 protein expression and polyA tail length. The extent of Pumilio binding to the endogenous RGC-32 mRNA in EBV-infected cell lines also correlated with RGC-32 protein expression. Our data demonstrate the importance of RGC-32 for the survival of EBV-immortalised B cells and identify Pumilio as a key regulator of RGC-32 translation.


Asunto(s)
Linfoma de Burkitt/genética , Proteínas de Ciclo Celular/genética , Herpesvirus Humano 4/genética , Proteínas Musculares/genética , Proteínas del Tejido Nervioso/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Regiones no Traducidas 3'/genética , Linfocitos B/virología , Linfoma de Burkitt/patología , Linfoma de Burkitt/virología , Proteína Quinasa CDC2/genética , Ciclo Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Herpesvirus Humano 4/patogenicidad , Humanos , Poli A/genética , Unión Proteica/genética , Señales de Poliadenilación de ARN 3'/genética
11.
Curr Opin Virol ; 26: 149-155, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28910751

RESUMEN

The oncogenic Epstein-Barr virus (EBV) growth transforms B cells and drives lymphoma and carcinoma development. The virus encodes four key transcription factors (EBNA2, EBNA3A, EBNA3B and EBNA3C) that hijack host cell factors to bind gene control elements and reprogramme infected B cells. These viral factors predominantly target long-range enhancers to alter the expression of host cell genes that control B cell growth and survival and facilitate virus persistence. Enhancer and super-enhancer binding by these EBNAs results in large-scale reorganisation of three-dimensional enhancer-promoter architecture to drive the overexpression of oncogenes, the silencing of tumour suppressors and the modulation of transcription, cell-cycle progression, migration and adhesion.


Asunto(s)
Linfocitos B/virología , Carcinogénesis , Cromatina/metabolismo , Herpesvirus Humano 4/patogenicidad , Interacciones Huésped-Patógeno , Transformación Celular Viral , Humanos , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo
12.
Adv Exp Med Biol ; 962: 283-298, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28299664

RESUMEN

RUNX1 and RUNX3 are the main RUNX genes expressed in B lymphocytes. Both are expressed throughout B-cell development and play key roles at certain key developmental transitions. The tumour-associated Epstein-Barr virus (EBV) has potent B-cell transforming ability and manipulates RUNX3 and RUNX1 transcription through novel mechanisms to control B cell growth. In contrast to resting mature B cells where RUNX1 expression is high, in EBV-infected cells RUNX1 levels are low and RUNX3 levels are high. Downregulation of RUNX1 in these cells results from cross-regulation by RUNX3 and serves to relieve RUNX1-mediated growth repression. RUNX3 is upregulated by the EBV transcription factor (TF) EBNA2 and represses RUNX1 transcription through RUNX sites in the RUNX1 P1 promoter. Recent analysis revealed that EBNA2 activates RUNX3 transcription through an 18 kb upstream super-enhancer in a manner dependent on the EBNA2 and Notch DNA-binding partner RBP-J. This super-enhancer also directs RUNX3 activation by two further RBP-J-associated EBV TFs, EBNA3B and 3C. Counter-intuitively, EBNA2 also hijacks RBP-J to target a super-enhancer region upstream of RUNX1 to maintain some RUNX1 expression in certain cell backgrounds, although the dual functioning EBNA3B and 3C proteins limit this activation. Interestingly, the B-cell genome binding sites of EBV TFs overlap extensively with RUNX3 binding sites and show enrichment for RUNX motifs. Therefore in addition to B-cell growth manipulation through the long-range control of RUNX transcription, EBV may also use RUNX proteins as co-factors to deregulate the transcription of many B cell genes during immortalisation.


Asunto(s)
Linfocitos B/metabolismo , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Animales , Linfocitos B/virología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Activación de Linfocitos/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Proteínas Virales/metabolismo
13.
Biochem J ; 474(10): 1591-1602, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28341807

RESUMEN

Understanding how certain protein toxins from the normally insecticidal bacterium Bacillus thuringiensis (Bt) target human cell lines has implications for both the risk assessment of products containing these toxins and potentially for cancer therapy. This understanding requires knowledge of whether the human cell active toxins work by the same mechanism as their insecticidal counterparts or by alternative ones. The Bt Cry41Aa (also known as Parasporin3) toxin is structurally related to the toxins synthesised by commercially produced transgenic insect-resistant plants, with the notable exception of an additional C-terminal ß-trefoil ricin domain. To better understand its mechanism of action, we developed an efficient expression system for the toxin and created mutations in regions potentially involved in the toxic mechanism. Deletion of the ricin domain did not significantly affect the activity of the toxin against the human HepG2 cell line, suggesting that this region was not responsible for the mammalian specificity of Cry41Aa. Various biochemical assays suggested that unlike some other human cell active toxins from Bt Cry41Aa did not induce apoptosis, but that its mechanism of action was consistent with that of a pore-forming toxin. The toxin induced a rapid and significant decrease in metabolic activity. Adenosine triphosphate depletion, cell swelling and membrane damage were also observed. An exposed loop region believed to be involved in receptor binding of insecticidal Cry toxins was shown to be important for the activity of Cry41Aa against HepG2 cells.


Asunto(s)
Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Endotoxinas/toxicidad , Hepatocitos/efectos de los fármacos , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/toxicidad , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Endotoxinas/química , Endotoxinas/genética , Endotoxinas/metabolismo , Células HeLa , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Insecticidas/química , Insecticidas/metabolismo , Insecticidas/toxicidad , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/toxicidad , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidad , Homología Estructural de Proteína
14.
Elife ; 52016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27490482

RESUMEN

Lymphomagenesis in the presence of deregulated MYC requires suppression of MYC-driven apoptosis, often through downregulation of the pro-apoptotic BCL2L11 gene (Bim). Transcription factors (EBNAs) encoded by the lymphoma-associated Epstein-Barr virus (EBV) activate MYC and silence BCL2L11. We show that the EBNA2 transactivator activates multiple MYC enhancers and reconfigures the MYC locus to increase upstream and decrease downstream enhancer-promoter interactions. EBNA2 recruits the BRG1 ATPase of the SWI/SNF remodeller to MYC enhancers and BRG1 is required for enhancer-promoter interactions in EBV-infected cells. At BCL2L11, we identify a haematopoietic enhancer hub that is inactivated by the EBV repressors EBNA3A and EBNA3C through recruitment of the H3K27 methyltransferase EZH2. Reversal of enhancer inactivation using an EZH2 inhibitor upregulates BCL2L11 and induces apoptosis. EBV therefore drives lymphomagenesis by hijacking long-range enhancer hubs and specific cellular co-factors. EBV-driven MYC enhancer activation may contribute to the genesis and localisation of MYC-Immunoglobulin translocation breakpoints in Burkitt's lymphoma.


Asunto(s)
Proteína 11 Similar a Bcl2/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Silenciador del Gen , Herpesvirus Humano 4/enzimología , Herpesvirus Humano 4/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Transcripcional , Proteína 11 Similar a Bcl2/genética , ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
15.
Nucleic Acids Res ; 44(10): 4636-50, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-26883634

RESUMEN

In B cells infected by the cancer-associated Epstein-Barr virus (EBV), RUNX3 and RUNX1 transcription is manipulated to control cell growth. The EBV-encoded EBNA2 transcription factor (TF) activates RUNX3 transcription leading to RUNX3-mediated repression of the RUNX1 promoter and the relief of RUNX1-directed growth repression. We show that EBNA2 activates RUNX3 through a specific element within a -97 kb super-enhancer in a manner dependent on the expression of the Notch DNA-binding partner RBP-J. We also reveal that the EBV TFs EBNA3B and EBNA3C contribute to RUNX3 activation in EBV-infected cells by targeting the same element. Uncovering a counter-regulatory feed-forward step, we demonstrate EBNA2 activation of a RUNX1 super-enhancer (-139 to -250 kb) that results in low-level RUNX1 expression in cells refractory to RUNX1-mediated growth inhibition. EBNA2 activation of the RUNX1 super-enhancer is also dependent on RBP-J. Consistent with the context-dependent roles of EBNA3B and EBNA3C as activators or repressors, we find that these proteins negatively regulate the RUNX1 super-enhancer, curbing EBNA2 activation. Taken together our results reveal cell-type-specific exploitation of RUNX gene super-enhancers by multiple EBV TFs via the Notch pathway to fine tune RUNX3 and RUNX1 expression and manipulate B-cell growth.


Asunto(s)
Linfocitos B/virología , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Elementos de Facilitación Genéticos , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Linfocitos B/metabolismo , Línea Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Receptores Notch/metabolismo
16.
PLoS Pathog ; 9(9): e1003636, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24068937

RESUMEN

Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors.


Asunto(s)
Reprogramación Celular , Elementos de Facilitación Genéticos , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Marcación de Gen , Herpesvirus Humano 4/metabolismo , Modelos Biológicos , Proteínas Represoras/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Sitios de Unión , Unión Competitiva , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Co-Represoras , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/patología , Antígenos Nucleares del Virus de Epstein-Barr/química , Antígenos Nucleares del Virus de Epstein-Barr/genética , Interacciones Huésped-Patógeno , Humanos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
17.
J Virol ; 86(9): 5165-78, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22357270

RESUMEN

Epstein-Barr virus (EBV) establishes a persistent latent infection in B lymphocytes and is associated with the development of numerous human tumors. Epstein-Barr nuclear antigen 3C (EBNA 3C) is essential for B-cell immortalization, has potent cell cycle deregulation capabilities, and functions as a regulator of both viral- and cellular-gene expression. We performed transcription profiling on EBNA 3C-expressing B cells and identified several chemokines and members of integrin receptor-signaling pathways, including CCL3, CCL4, CXCL10, CXCL11, ITGA4, ITGB1, ADAM28, and ADAMDEC1, as cellular target genes that could be repressed by the action of EBNA 3C alone. Chemotaxis assays demonstrated that downregulation of CXCL10 and -11 by EBNA 3C is sufficient to reduce the migration of cells expressing the CXCL10 and -11 receptor CXCR3. Gene repression by EBNA 3C was accompanied by decreased histone H3 lysine 9/14 acetylation and increased histone H3 lysine 27 trimethylation. In an EBV-positive cell line expressing all latent genes, we identified binding sites for EBNA 3C at ITGB1 and ITGA4 and in a distal regulatory region between ADAMDEC1 and ADAM28, providing the first demonstration of EBNA 3C association with cellular-gene control regions. Our data implicate indirect mechanisms in CXCL10 and CXCL11 repression by EBNA 3C. In summary, we have unveiled key cellular pathways repressed by EBNA 3C that are likely to contribute to the ability of EBV-immortalized cells to modulate immune responses, adhesion, and B-lymphocyte migration to facilitate persistence in the host.


Asunto(s)
Antígenos Virales/metabolismo , Regulación hacia Abajo/genética , Integrinas/genética , Regiones Promotoras Genéticas , Transducción de Señal , Proteínas ADAM/genética , Animales , Sitios de Unión , Adhesión Celular/genética , Línea Celular , Inhibición de Migración Celular/genética , Quimiocinas/genética , Quimiotaxis/genética , Antígenos Nucleares del Virus de Epstein-Barr , Regulación de la Expresión Génica , Humanos , Ratones , Receptores CXCR3/metabolismo , Elementos Reguladores de la Transcripción
18.
PLoS One ; 6(12): e28638, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163048

RESUMEN

Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator.


Asunto(s)
Proteínas de Ciclo Celular/biosíntesis , Herpesvirus Humano 4/metabolismo , Proteínas Musculares/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Regulación hacia Arriba , Linfocitos B/metabolismo , Linfocitos B/virología , Proteína Quinasa CDC2/biosíntesis , Línea Celular Tumoral , Subunidad alfa 2 del Factor de Unión al Sitio Principal/biosíntesis , Citometría de Flujo/métodos , Fase G2 , Perfilación de la Expresión Génica , Humanos , Plásmidos/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Transcripción Genética
19.
PLoS Pathog ; 7(10): e1002334, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22046134

RESUMEN

Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions.


Asunto(s)
Transformación Celular Viral , Herpesvirus Humano 4/enzimología , Nucleosomas/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , Herpesvirus Humano 4/patogenicidad , Humanos , Procedimientos Analíticos en Microchip , Nucleosomas/virología , Fosforilación , Transducción de Señal , Células Tumorales Cultivadas , Replicación Viral
20.
Virology ; 397(2): 299-310, 2010 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19969318

RESUMEN

The Epstein-Barr virus (EBV) growth-transforms B-lymphocytes. The virus-encoded nuclear antigen 2 (EBNA2) is essential for transformation and activates gene expression by association with DNA-bound transcription factors such as RBPJkappa (CSL/CBF1). We have previously shown that EBNA2 contains symmetrically dimethylated Arginine (sDMA) residues. Deletion of the RG-repeat results in a reduced ability of the virus to immortalise B-cells. We now show that the RG repeat also contains asymmetrically dimethylated Arginines (aDMA) but neither non-methylated (NMA) Arginines nor citrulline residues. We demonstrate that only aDMA-containing EBNA2 is found in a complex with DNA-bound RBPJkappa in vitro and preferentially associates with the EBNA2-responsive EBV C, LMP1 and LMP2A promoters in vivo. Inhibition of methylation in EBV-infected cells results in reduced expression of the EBNA2-regulated viral gene LMP1, providing additional evidence that methylation is a prerequisite for DNA-binding by EBNA2 via association with the transcription factor RBPJkappa.


Asunto(s)
Arginina/metabolismo , ADN/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Regiones Promotoras Genéticas , Proteínas Virales/metabolismo , Animales , Línea Celular , Expresión Génica , Humanos , Metilación , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Ratas , Proteínas de la Matriz Viral/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA