Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 7(1): 4807, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684858

RESUMEN

X-ray chest radiography is an inexpensive and broadly available tool for initial assessment of the lung in clinical routine, but typically lacks diagnostic sensitivity for detection of pulmonary diseases in their early stages. Recent X-ray dark-field (XDF) imaging studies on mice have shown significant improvements in imaging-based lung diagnostics. Especially in the case of early diagnosis of chronic obstructive pulmonary disease (COPD), XDF imaging clearly outperforms conventional radiography. However, a translation of this technique towards the investigation of larger mammals and finally humans has not yet been achieved. In this letter, we present the first in-vivo XDF full-field chest radiographs (32 × 35 cm2) of a living pig, acquired with clinically compatible parameters (40 s scan time, approx. 80 µSv dose). For imaging, we developed a novel high-energy XDF system that overcomes the limitations of currently established setups. Our XDF radiographs yield sufficiently high image quality to enable radiographic evaluation of the lungs. We consider this a milestone in the bench-to-bedside translation of XDF imaging and expect XDF imaging to become an invaluable tool in clinical practice, both as a general chest X-ray modality and as a dedicated tool for high-risk patients affected by smoking, industrial work and indoor cooking.


Asunto(s)
Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Masculino , Radiografía Torácica/instrumentación , Porcinos , Tomografía Computarizada por Rayos X/instrumentación
2.
Invest Radiol ; 51(5): 340-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26741891

RESUMEN

OBJECTIVES: Round lesions are a common mammographic finding, which can contribute more than 20% of overall recalls at screening. Discrimination of cystic fluid from solid tissue by spectral x-ray imaging has been demonstrated in specimen experiments. This work translates these results into a clinical pilot study to investigate the feasibility of discriminating cystic from solid lesions using spectral mammography. MATERIALS AND METHODS: Women undergoing mammography as part of their routine diagnostic workup were consented for analysis of spectral information obtained from a photon-counting mammography system. Images were analyzed retrospectively after diagnosis was confirmed with ultrasound and pathology. Well-defined solitary lesions were delineated independently by 3 expert radiologists. A breast lesion model is generated from the spectral mammography data using the energy-dependent x-ray attenuation of cyst fluid, carcinoma, and adipose and glandular tissue. From the breast lesion model, 2 spectral features are computed and combined in a 2-feature discrimination algorithm, which is evaluated in an analysis of the receiver operating characteristic curve for the task of identifying solid lesions ("positive result"). Expected outcomes on a screening population are extrapolated from this pilot study by cross-validation with bootstrapping using a 95% confidence interval (CI). RESULTS: The 2-feature discrimination algorithm was evaluated on the set of 119 eligible lesions (62 solids, 57 cysts) of diameter greater than 10 mm. The area under the receiver operating characteristic curve (AUC) was 0.88 with a specificity of 61% at the 99% sensitivity level on average over all expert radiologists. Cross-validation with bootstrapping of the clinical data revealed an AUC of 0.89 (95% CI, 0.79-0.96) and a specificity of 56% (95% CI, 33%-78%) when operating the algorithm at the 99% sensitivity level. CONCLUSIONS: Discriminating cystic from solid lesions with spectral mammography demonstrates promising results with the potential to reduce mammographic recalls. It is estimated that for each missed cancer at least 625 cystic lesions would have been correctly identified and hence would not have been needed to be recalled. Our results justify undertaking a larger reader study to refine the algorithm and determine clinically relevant thresholds to allow safe classification of cystic lesions by spectral mammography.


Asunto(s)
Quiste Mamario/diagnóstico por imagen , Mamografía/métodos , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Neoplasias de la Mama/diagnóstico por imagen , Carcinoma Ductal de Mama/diagnóstico por imagen , Diagnóstico Diferencial , Femenino , Humanos , Persona de Mediana Edad , Proyectos Piloto
3.
Invest Radiol ; 49(3): 131-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24141742

RESUMEN

OBJECTIVES: Differential phase contrast and scattering-based x-ray mammography has the potential to provide additional and complementary clinically relevant information compared with absorption-based mammography. The purpose of our study was to provide a first statistical evaluation of the imaging capabilities of the new technique compared with digital absorption mammography. MATERIALS AND METHODS: We investigated non-fixed mastectomy samples of 33 patients with invasive breast cancer, using grating-based differential phase contrast mammography (mammoDPC) with a conventional, low-brilliance x-ray tube. We simultaneously recorded absorption, differential phase contrast, and small-angle scattering signals that were combined into novel high-frequency-enhanced images with a dedicated image fusion algorithm. Six international, expert breast radiologists evaluated clinical digital and experimental mammograms in a 2-part blinded, prospective independent reader study. The results were statistically analyzed in terms of image quality and clinical relevance. RESULTS: The results of the comparison of mammoDPC with clinical digital mammography revealed the general quality of the images to be significantly superior (P < 0.001); sharpness, lesion delineation, as well as the general visibility of calcifications to be significantly more assessable (P < 0.001); and delineation of anatomic components of the specimens (surface structures) to be significantly sharper (P < 0.001). Spiculations were significantly better identified, and the overall clinically relevant information provided by mammoDPC was judged to be superior (P < 0.001). CONCLUSIONS: Our results demonstrate that complementary information provided by phase and scattering enhanced mammograms obtained with the mammoDPC approach deliver images of generally superior quality. This technique has the potential to improve radiological breast diagnostics.


Asunto(s)
Algoritmos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Mamografía/métodos , Intensificación de Imagen Radiográfica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Factibilidad , Femenino , Humanos , Técnicas In Vitro , Masculino , Mastectomía , Persona de Mediana Edad , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA