Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Cell Sci ; 136(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36942724

RESUMEN

Glucose sensing in pancreatic ß-cells depends on oxidative phosphorylation and mitochondria-derived signals that promote insulin secretion. Using mass spectrometry-based phosphoproteomics to search for downstream effectors of glucose-dependent signal transduction in INS-1E insulinoma cells, we identified the outer mitochondrial membrane protein SLC25A46. Under resting glucose concentrations, SLC25A46 was phosphorylated on a pair of threonine residues (T44/T45) and was dephosphorylated in response to glucose-induced Ca2+ signals. Overexpression of SLC25A46 in INS-1E cells caused complete mitochondrial fragmentation, resulting in a mild mitochondrial defect associated with lowered glucose-induced insulin secretion. In contrast, inactivation of the Slc25a46 gene resulted in dramatic mitochondrial hyperfusion, without affecting respiratory activity or insulin secretion. Consequently, SLC25A46 is not essential for metabolism-secretion coupling under normal nutrient conditions. Importantly, insulin-secreting cells lacking SLC25A46 had an exacerbated sensitivity to lipotoxic conditions, undergoing massive apoptosis when exposed to palmitate. Therefore, in addition to its role in mitochondrial dynamics, SLC25A46 plays a role in preventing mitochondria-induced apoptosis in INS-E cells exposed to nutrient stress. By protecting mitochondria, SLC25A46 might help to maintain ß-cell mass essential for blood glucose control.


Asunto(s)
Células Secretoras de Insulina , Neoplasias Pancreáticas , Animales , Ratas , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Fosfato/metabolismo
2.
Diabetologia ; 63(12): 2628-2640, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32960311

RESUMEN

AIMS/HYPOTHESIS: In islets from individuals with type 2 diabetes and in islets exposed to chronic elevated glucose, mitochondrial energy metabolism is impaired. Here, we studied early metabolic changes and mitochondrial adaptations in human beta cells during chronic glucose stress. METHODS: Respiration and cytosolic ATP changes were measured in human islet cell clusters after culture for 4 days in 11.1 mmol/l glucose. Metabolomics was applied to analyse intracellular metabolite changes as a result of glucose stress conditions. Alterations in beta cell function were followed using insulin secretion assays or cytosolic calcium signalling after expression of the calcium probe YC3.6 specifically in beta cells of islet clusters. RESULTS: At early stages of glucose stress, mitochondrial energy metabolism was augmented in contrast to the previously described mitochondrial dysfunction in beta cells from islets of diabetic donors. Following chronic glucose stress, mitochondrial respiration increased (by 52.4%, p < 0.001) and, as a consequence, the cytosolic ATP/ADP ratio in resting human pancreatic islet cells was elevated (by 27.8%, p < 0.05). Because of mitochondrial overactivation in the resting state, nutrient-induced beta cell activation was reduced. In addition, chronic glucose stress caused metabolic adaptations that resulted in the accumulation of intermediates of the glycolytic pathway, the pentose phosphate pathway and the TCA cycle; the most strongly augmented metabolite was glycerol 3-phosphate. The changes in metabolites observed are likely to be due to the inability of mitochondria to cope with continuous nutrient oversupply. To protect beta cells from chronic glucose stress, we inhibited mitochondrial pyruvate transport. Metabolite concentrations were partially normalised and the mitochondrial respiratory response to nutrients was markedly improved. Furthermore, stimulus-secretion coupling as assessed by cytosolic calcium signalling, was restored. CONCLUSION/INTERPRETATION: We propose that metabolic changes and associated mitochondrial overactivation are early adaptations to glucose stress, and may reflect what happens as a result of poor blood glucose control. Inhibition of mitochondrial pyruvate transport reduces mitochondrial nutrient overload and allows beta cells to recover from chronic glucose stress. Graphical abstract.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Humanos , Metabolómica/métodos
3.
Stem Cell Reports ; 12(4): 787-800, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30853374

RESUMEN

In type 1 diabetes, a renewable source of human pancreatic ß cells, in particular from human induced pluripotent stem cell (hiPSC) origin, would greatly benefit cell therapy. Earlier work showed that pancreatic progenitors differentiated from human embryonic stem cells in vitro can further mature to become glucose responsive following macroencapsulation and transplantation in mice. Here we took a similar approach optimizing the generation of pancreatic progenitors from hiPSCs. This work demonstrates that hiPSCs differentiated to pancreatic endoderm in vitro can be efficiently and robustly generated under large-scale conditions. The hiPSC-derived pancreatic endoderm cells (HiPECs) can further differentiate into glucose-responsive islet-like cells following macroencapsulation and in vivo implantation. The HiPECs can protect mice from streptozotocin-induced hyperglycemia and maintain normal glucose homeostasis and equilibrated plasma glucose concentrations at levels similar to the human set point. These results further validate the potential use of hiPSC-derived islet cells for application in clinical settings.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Células Madre Pluripotentes Inducidas/citología , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Trasplante de Células Madre , Animales , Biomarcadores , Glucemia , Péptido C/sangre , Diferenciación Celular , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/etiología , Modelos Animales de Enfermedad , Endodermo/citología , Técnica del Anticuerpo Fluorescente , Humanos , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Hiperglucemia/terapia , Inmunofenotipificación , Insulina/biosíntesis , Ratones , Modelos Biológicos , Resultado del Tratamiento
4.
Mol Cell Endocrinol ; 481: 71-83, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30476561

RESUMEN

Changes in mitochondrial and cytosolic pH alter the chemical gradient across the inner mitochondrial membrane. The proton chemical gradient contributes to mitochondrial ATP synthesis as well as the uptake and release of metabolites and ions from the organelle. Here mitochondrial pH and ΔpH were studied for the first time in human pancreatic ß-cells. Adenoviruses were used for rat insulin promoter dependent expression of the pH sensor SypHer targeted to either the mitochondrial matrix or the cytosol. The matrix pH in resting human ß-cells is low (pH = 7.50 ±â€¯SD 0.17) compared to published values in other cell types. Consequently, the ΔpH of ß-cells mitochondria is small. Glucose stimulation consistently resulted in acidification of the matrix pH in INS-1E insulinoma cells and ß-cells in intact human islets or islet monolayer cultures. We registered acidification with similar kinetics but of slightly smaller amplitude in the cytosol of ß-cells, thus glucose stimulation further reduced the ΔpH. Infection of human islets with high levels of adenoviruses caused the mitochondrial pH to increase. The apoptosis inducer and broad-spectrum kinase inhibitor staurosporine had similar effects on pH homeostasis. Although staurosporine alone does not affect the mitochondrial pH, glucose slightly increases the matrix pH of staurosporine treated cells. These two cellular stressors alter the normal mitochondrial pH response to glucose in pancreatic ß-cells.


Asunto(s)
Glucosa/farmacología , Células Secretoras de Insulina/citología , Proteínas Luminiscentes/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Adenoviridae/genética , Animales , Células Cultivadas , Genes Reporteros , Humanos , Concentración de Iones de Hidrógeno , Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Luminiscentes/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/química , Regiones Promotoras Genéticas , Ratas , Transfección
5.
FASEB J ; 33(4): 4660-4674, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30589571

RESUMEN

In pancreatic ß-cells, mitochondria generate signals that promote insulin granule exocytosis. Here we study how lysine acetylation of mitochondrial proteins mechanistically affects metabolism-secretion coupling in insulin-secreting cells. Using mass spectrometry-based proteomics, we identified lysine acetylation sites in rat insulinoma cell line clone 1E cells. In cells lacking the mitochondrial lysine deacetylase sirtuin-3 (SIRT3), several matrix proteins are hyperacetylated. Disruption of the SIRT3 gene has a deleterious effect on mitochondrial energy metabolism and Ca2+ signaling. Under resting conditions, SIRT3 deficient cells are overactivated, which elevates the respiratory rate and enhances calcium signaling and basal insulin secretion. In response to glucose, the SIRT3 knockout cells are unable to mount a sustained cytosolic ATP response. Calcium signaling is strongly reduced and the respiratory response as well as insulin secretion are blunted. We propose mitochondrial protein lysine acetylation as a control mechanism in ß-cell energy metabolism and Ca2+ signaling.-De Marchi, U., Galindo, A. N., Thevenet, J., Hermant, A., Bermont, F., Lassueur, S., Domingo, J. S., Kussmann, M., Dayon, L., Wiederkehr, A. Mitochondrial lysine deacetylation promotes energy metabolism and calcium signaling in insulin-secreting cells.


Asunto(s)
Señalización del Calcio/fisiología , Células Secretoras de Insulina/metabolismo , Lisina/metabolismo , Mitocondrias/metabolismo , Acetilación , Adenosina Trifosfato/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , Metabolismo Energético/fisiología , Glucosa/farmacología , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Sirtuina 3/metabolismo , Espectrometría de Masas en Tándem
6.
Exp Cell Res ; 357(2): 170-180, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28527697

RESUMEN

Chloramphenicol and several other antibiotics targeting bacterial ribosomes inhibit mitochondrial protein translation. Inhibition of mitochondrial protein synthesis leads to mitonuclear protein imbalance and reduced respiratory rates as confirmed here in HeLa and PC12 cells. Unexpectedly, respiration in INS-1E insulinoma cells and primary human islets was unaltered in the presence of chloramphenicol. Resting respiratory rates and glucose stimulated acceleration of respiration were also not lowered when a range of antibiotics including, thiamphenicol, streptomycin, gentamycin and doxycycline known to interfere with bacterial protein synthesis were tested. However, chloramphenicol efficiently reduced mitochondrial protein synthesis in INS-1E cells, lowering expression of the mtDNA encoded COX1 subunit of the respiratory chain but not the nuclear encoded ATP-synthase subunit ATP5A. Despite a marked reduction of the essential respiratory chain subunit COX1, normal respiratory rates were maintained in INS-1E cells. ATP-synthase dependent respiration was even elevated in chloramphenicol treated INS-1E cells. Consistent with these findings, glucose-dependent calcium signaling reflecting metabolism-secretion coupling in beta-cells, was augmented. We conclude that antibiotics targeting mitochondria are able to cause mitonuclear protein imbalance in insulin secreting cells. We hypothesize that in contrast to other cell types, compensatory mechanisms are sufficiently strong to maintain normal respiratory rates and surprisingly even result in augmented ATP-synthase dependent respiration and calcium signaling following glucose stimulation. The result suggests that in insulin secreting cells only lowering COX1 below a threshold level may result in a measurable impairment of respiration. When focusing on mitochondrial function, care should be taken when including antibiotics targeting translation for long-term cell culture as depending on the sensitivity of the cell type analyzed, respiration, mitonuclear protein imbalance or down-stream signaling may be altered.


Asunto(s)
Antibacterianos/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Insulinoma/tratamiento farmacológico , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Consumo de Oxígeno/fisiología , Células PC12 , Neoplasias Pancreáticas/metabolismo , Ratas , Respiración/efectos de los fármacos
7.
BMC Genomics ; 18(1): 326, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28441938

RESUMEN

BACKGROUND: Mitochondrial dysfunction is linked to numerous pathological states, in particular related to metabolism, brain health and ageing. Nuclear encoded gene polymorphisms implicated in mitochondrial functions can be analyzed in the context of classical genome wide association studies. By contrast, mitochondrial DNA (mtDNA) variants are more challenging to identify and analyze for several reasons. First, contrary to the diploid nuclear genome, each cell carries several hundred copies of the circular mitochondrial genome. Mutations can therefore be present in only a subset of the mtDNA molecules, resulting in a heterogeneous pool of mtDNA, a situation referred to as heteroplasmy. Consequently, detection and quantification of variants requires extremely accurate tools, especially when this proportion is small. Additionally, the mitochondrial genome has pseudogenized into numerous copies within the nuclear genome over the course of evolution. These nuclear pseudogenes, named NUMTs, must be distinguished from genuine mtDNA sequences and excluded from the analysis. RESULTS: Here we describe a novel method, named MitoRS, in which the entire mitochondrial genome is amplified in a single reaction using rolling circle amplification. This approach is easier to setup and of higher throughput when compared to classical PCR amplification. Sequencing libraries are generated at high throughput exploiting a tagmentation-based method. Fine-tuned parameters are finally applied in the analysis to allow detection of variants even of low frequency heteroplasmy. The method was thoroughly benchmarked in a set of experiments designed to demonstrate its robustness, accuracy and sensitivity. The MitoRS method requires 5 ng total DNA as starting material. More than 96 samples can be processed in less than a day of laboratory work and sequenced in a single lane of an Illumina HiSeq flow cell. The lower limit for accurate quantification of single nucleotide variants has been measured at 1% frequency. CONCLUSIONS: The MitoRS method enables the robust, accurate, and sensitive analysis of a large number of samples. Because it is cost effective and simple to setup, we anticipate this method will promote the analysis of mtDNA variants in large cohorts, and may help assessing the impact of mtDNA heteroplasmy on metabolic health, brain function, cancer progression, or ageing.


Asunto(s)
ADN Mitocondrial/análisis , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN Mitocondrial/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
8.
J Cell Sci ; 130(11): 1929-1939, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28404787

RESUMEN

Pancreatic ß-cells sense glucose, promoting insulin secretion. Glucose sensing requires the sequential stimulation of glycolysis, mitochondrial metabolism and Ca2+ entry. To elucidate how mitochondrial activation in ß-cells contributes to insulin secretion, we compared the effects of glucose and the mitochondrial substrate methylsuccinate in the INS-1E insulin-secreting cell line at the respective concentrations at which they maximally activate mitochondrial respiration. Both substrates induced insulin secretion with distinct respiratory profiles, mitochondrial hyperpolarization, NADH production and ATP-to-ADP ratios. In contrast to glucose, methylsuccinate failed to induce large [Ca2+] rises and exocytosis proceeded largely independently of mitochondrial ATP synthesis. Both glucose- and methylsuccinate-induced secretion was blocked by diazoxide, indicating that Ca2+ is required for exocytosis. Dynamic assessment of the redox state of mitochondrial thiols revealed a less marked reduction in response to methylsuccinate than with glucose. Our results demonstrate that insulin exocytosis can be promoted by two distinct mechanisms one of which is dependent on mitochondrial ATP synthesis and large Ca2+ transients, and one of which is independent of mitochondrial ATP synthesis and relies on small Ca2+ signals. We propose that the combined effects of Ca2+ and redox reactions can trigger insulin secretion by these two mechanisms.


Asunto(s)
Calcio/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocondrias/metabolismo , Succinatos/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Línea Celular Tumoral , Diazóxido/farmacología , Exocitosis/efectos de los fármacos , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Imagen Molecular , Consumo de Oxígeno/efectos de los fármacos , Ratas , Análisis de la Célula Individual , Succinatos/metabolismo
9.
Adv Healthc Mater ; 6(4)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27995762

RESUMEN

The development of cell-based biosensors that give insight into cell and tissue function in vivo is an attractive technology for biomedical research. Here, the development of a cell line expressing a fluorescent calcium sensor for the study of beta-cell function in vivo is reported. The bioresponsive cell model is based on INS-1E pancreatic beta-cells, stably expressing the genetically encoded cameleon-based fluorescent sensor YC3.6cyto . Following single-cell selection and expansion, functional testing and in vitro encapsulation experiments are used to identify a suitable clone of INS-1E cells expressing the calcium sensor. This clone is transplanted subcutaneous in mouse using a cell macroencapsulation system based on flat sheet porous membranes. Cells in the implanted capsules are able to respond to glucose in vivo by secreting insulin and thereby contributing to the regulation of glycaemia in the mice. Furthermore, fluorescence imaging of explanted devices shows that encapsulated cells maintain high level expression of YC3.6cyto in vivo. In conclusion, these data show that encapsulated INS-1E cells stably expressing a genetically encoded calcium sensor can be successfully implanted in vivo, and therefore serve as biosensing element or in vivo model to longitudinally monitor the function of pancreatic beta-cells.


Asunto(s)
Proteínas de Unión al Calcio/biosíntesis , Calcio/metabolismo , Células Inmovilizadas , Células Secretoras de Insulina , Insulina/metabolismo , Proteínas Luminiscentes/biosíntesis , Animales , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Células Inmovilizadas/metabolismo , Células Inmovilizadas/trasplante , Xenoinjertos , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/trasplante , Proteínas Luminiscentes/genética , Ratones , Ratones SCID , Ratas
10.
FASEB J ; 31(3): 1028-1045, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27927723

RESUMEN

Mitochondria play a central role in pancreatic ß-cell nutrient sensing by coupling their metabolism to plasma membrane excitability and insulin granule exocytosis. Whether non-nutrient secretagogues stimulate mitochondria as part of the molecular mechanism to promote insulin secretion is not known. Here, we show that PKC signaling, which is employed by many non-nutrient secretagogues, augments mitochondrial respiration in INS-1E (rat insulinoma cell line clone 1E) and human pancreatic ß cells. The phorbol ester, phorbol 12-myristate 13-acetate, accelerates mitochondrial respiration at both resting and stimulatory glucose concentrations. A range of inhibitors of novel PKC isoforms prevent phorbol ester-induced respiration. Respiratory response was blocked by oligomycin that demonstrated PKC-dependent acceleration of mitochondrial ATP synthesis. Enhanced respiration was observed even when glycolysis was bypassed or fatty acid transport was blocked, which suggested that PKC regulates mitochondrial processes rather than upstream catabolic fluxes. A phosphoproteome study of phorbol ester-stimulated INS-1E cells maintained under resting (2.5 mM) glucose revealed a large number of phosphorylation sites that were altered during short-term activation of PKC signaling. The data set was enriched for proteins that are involved in gene expression, cytoskeleton remodeling, secretory vesicle transport, and exocytosis. Interactome analysis identified PKC, C-Raf, and ERK1/2 as the central phosphointeraction cluster. Prevention of ERK1/2 signaling by using a MEK1 inhibitor caused a marked decreased in phorbol 12-myristate 13-acetate-induced mitochondrial respiration. ERK1/2 signaling module therefore links PKC activation to downstream mitochondrial activation. We conclude that non-nutrient secretagogues act, in part, via PKC and downstream ERK1/2 signaling to stimulate mitochondrial energy production to compensate for energy expenditure that is linked to ß-cell activation.-Santo-Domingo, J., Chareyron, I., Dayon, L., Galindo, A. N., Cominetti, O., Giménez, M. P. G., De Marchi, U., Canto, C., Kussmann, M., Wiederkehr, A. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic ß cells.


Asunto(s)
Exocitosis , Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Proteína Quinasa C/metabolismo , Estallido Respiratorio , Adenosina Trifosfato/metabolismo , Células Cultivadas , Glucosa/metabolismo , Humanos , Isoenzimas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Oligomicinas/farmacología , Proteínas Proto-Oncogénicas c-raf/metabolismo
11.
FASEB J ; 30(5): 1913-26, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26839375

RESUMEN

Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 µM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 µM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.


Asunto(s)
Astrocitos/fisiología , Ácidos Grasos/farmacología , Cuerpos Cetónicos/metabolismo , Ácido Láctico/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Adenosina Trifosfato/biosíntesis , Células Cultivadas , Glucólisis , Humanos , Oxidación-Reducción , Consumo de Oxígeno , Células Madre Pluripotentes , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
J Biol Chem ; 290(7): 4086-96, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548283

RESUMEN

In pancreatic ß-cells, ATP acts as a signaling molecule initiating plasma membrane electrical activity linked to Ca(2+) influx, which triggers insulin exocytosis. The mitochondrial Ca(2+) uniporter (MCU) mediates Ca(2+) uptake into the organelle, where energy metabolism is further stimulated for sustained second phase insulin secretion. Here, we have studied the contribution of the MCU to the regulation of oxidative phosphorylation and metabolism-secretion coupling in intact and permeabilized clonal ß-cells as well as rat pancreatic islets. Knockdown of MCU with siRNA transfection blunted matrix Ca(2+) rises, decreased nutrient-stimulated ATP production as well as insulin secretion. Furthermore, MCU knockdown lowered the expression of respiratory chain complexes, mitochondrial metabolic activity, and oxygen consumption. The pH gradient formed across the inner mitochondrial membrane following nutrient stimulation was markedly lowered in MCU-silenced cells. In contrast, nutrient-induced hyperpolarization of the electrical gradient was not altered. In permeabilized cells, knockdown of MCU ablated matrix acidification in response to extramitochondrial Ca(2+). Suppression of the putative Ca(2+)/H(+) antiporter leucine zipper-EF hand-containing transmembrane protein 1 (LETM1) also abolished Ca(2+)-induced matrix acidification. These results demonstrate that MCU-mediated Ca(2+) uptake is essential to establish a nutrient-induced mitochondrial pH gradient which is critical for sustained ATP synthesis and metabolism-secretion coupling in insulin-releasing cells.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Insulinoma/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Canales de Calcio/química , Canales de Calcio/genética , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas de Transporte de Catión/genética , Proliferación Celular , Células Cultivadas , Metabolismo Energético , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Técnicas para Inmunoenzimas , Secreción de Insulina , Células Secretoras de Insulina/citología , Insulinoma/genética , Insulinoma/patología , Masculino , Potencial de la Membrana Mitocondrial , Fosforilación Oxidativa , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
J Biol Chem ; 289(13): 9182-94, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24554722

RESUMEN

Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)(+) ratio.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Calcio/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Glucosa/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , NADP/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ratas
14.
Mol Cell Endocrinol ; 381(1-2): 198-209, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23939247

RESUMEN

Here, we have investigated the role of inorganic phosphate (Pi) transport in mitochondria of rat clonal ß-cells. In α-toxin-permeabilized INS-1E cells, succinate and glycerol-3-phosphate increased mitochondrial ATP release which depends on exogenous ADP and Pi. In the presence of substrates, addition of Pi caused mitochondrial matrix acidification and hyperpolarisation which promoted ATP export. Dissipation of the mitochondrial pH gradient or pharmacological inhibition of Pi transport blocked the effects of Pi on electrochemical gradient and ATP export. Knock-down of the phosphate transporter PiC, however, neither prevented Pi-induced mitochondrial activation nor glucose-induced insulin secretion. Using (31)P NMR we observed reduction of Pi pools during nutrient stimulation of INS-1E cells. Interestingly, Pi loss was less pronounced in mitochondria than in the cytosol. We conclude that matrix alkalinisation is necessary to maintain a mitochondrial Pi pool, at levels sufficient to stimulate energy metabolism in insulin-secreting cells beyond its role as a substrate for ATP synthesis.


Asunto(s)
Glicerofosfatos/metabolismo , Mitocondrias/metabolismo , Fosfatos/metabolismo , Succinatos/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Arseniatos/farmacología , Línea Celular Tumoral , Concentración de Iones de Hidrógeno , Insulinoma , Potencial de la Membrana Mitocondrial , Translocasas Mitocondriales de ADP y ATP/antagonistas & inhibidores , Translocasas Mitocondriales de ADP y ATP/metabolismo , Membranas Mitocondriales/fisiología , Ratas
15.
Korean J Physiol Pharmacol ; 16(1): 71-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22416223

RESUMEN

Mitochondrial dynamics and distribution is critical for their role in bioenergetics and cell survival. We investigated the consequence of altered fission/fusion on mitochondrial function and motility in INS-1E rat clonal ß-cells. Adenoviruses were used to induce doxycycline-dependent expression of wild type (WT-Mfn1) or a dominant negative mitofusin 1 mutant (DN-Mfn1). Mitochondrial morphology and motility were analyzed by monitoring mitochondrially-targeted red fluorescent protein. Adenovirus-driven overexpression of WT-Mfn1 elicited severe aggregation of mitochondria, preventing them from reaching peripheral near plasma membrane areas of the cell. Overexpression of DN-Mfn1 resulted in fragmented mitochondria with widespread cytosolic distribution. WT-Mfn1 overexpression impaired mitochondrial function as glucose- and oligomycin-induced mitochondrial hyperpolarization were markedly reduced. Viability of the INS-1E cells, however, was not affected. Mitochondrial motility was significantly reduced in WT-Mfn1 overexpressing cells. Conversely, fragmented mitochondria in DN-Mfn1 overexpressing cells showed more vigorous movement than mitochondria in control cells. Movement of these mitochondria was also less microtubule-dependent. These results suggest that Mfn1-induced hyperfusion leads to mitochondrial dysfunction and hypomotility, which may explain impaired metabolism-secretion coupling in insulin-releasing cells overexpressing Mfn1.

16.
Mol Cell Endocrinol ; 353(1-2): 128-37, 2012 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21784130

RESUMEN

ß-Cell nutrient sensing depends on mitochondrial function. Oxidation of nutrient-derived metabolites in the mitochondria leads to plasma membrane depolarization, Ca(2+) influx and insulin granule exocytosis. Subsequent mitochondrial Ca(2+) uptake further accelerates metabolism and oxidative phosphorylation. Nutrient activation also increases the mitochondrial matrix pH. This alkalinization is required to maintain elevated insulin secretion during prolonged nutrient stimulation. Together the mitochondrial Ca(2+) rise and matrix alkalinization assure optimal ATP synthesis necessary for efficient activation of the triggering pathway of insulin secretion. The sustained, amplifying pathway of insulin release also depends on mitochondrial Ca(2+) signals, which likely influence the generation of glucose-derived metabolites serving as coupling factors. Therefore, mitochondria are both recipients and generators of signals essential for metabolism-secretion coupling. Activation of these signaling pathways would be an attractive target for the improvement of ß-cell function and the treatment of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/terapia , Exocitosis , Humanos , Secreción de Insulina , Células Secretoras de Insulina/patología , Potenciales de la Membrana , Fosforilación Oxidativa
17.
Biochem J ; 441(3): 971-8, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22050124

RESUMEN

Using the ROS (reactive oxygen species)-sensitive fluorescent dyes dichlorodihydrofluorescein and dihydroethidine, previous studies yielded opposite results about the glucose regulation of oxidative stress in insulin-secreting pancreatic ß-cells. In the present paper, we used the ratiometric fluorescent proteins HyPer and roGFP1 (redox-sensitive green fluorescent protein 1) targeted to mitochondria [mt-HyPer (mitochondrial HyPer)/mt-roGFP1 (mitochondrial roGFP1)] to monitor glucose-induced changes in mitochondrial hydrogen peroxide concentration and glutathione redox state in adenovirus-infected rat islet cell clusters. Because of the reported pH sensitivity of HyPer, the results were compared with those obtained with the mitochondrial pH sensors mt-AlpHi and mt-SypHer. The fluorescence ratio of the mitochondrial probes slowly decreased (mt-HyPer) or increased (mt-roGFP1) in the presence of 10 mmol/l glucose. Besides its expected sensitivity to H2O2, mt-HyPer was also highly pH sensitive. In agreement, changes in mitochondrial metabolism similarly affected mt-HyPer, mt-AlpHi and mt-SypHer fluorescence signals. In contrast, the mt-roGFP1 fluorescence ratio was only slightly affected by pH and reversibly increased when glucose was lowered from 10 to 2 mmol/l. This increase was abrogated by the catalytic antioxidant Mn(III) tetrakis (4-benzoic acid) porphyrin but not by N-acetyl-L-cysteine. In conclusion, due to its pH sensitivity, mt-HyPer is not a reliable indicator of mitochondrial H2O2 in ß-cells. In contrast, the mt-roGFP1 fluorescence ratio monitors changes in ß-cell mitochondrial glutathione redox state with little interference from pH changes. Our results also show that glucose acutely decreases rather than increases mitochondrial thiol oxidation in rat ß-cells.


Asunto(s)
Glutatión/análisis , Proteínas Fluorescentes Verdes/análisis , Peróxido de Hidrógeno/análisis , Células Secretoras de Insulina/química , Mediciones Luminiscentes/métodos , Mitocondrias/química , Animales , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Cinética , Masculino , Mitocondrias/metabolismo , Concentración Osmolar , Oxidación-Reducción , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Sensibilidad y Especificidad
18.
Diabetes ; 60(11): 2872-82, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21926270

RESUMEN

OBJECTIVE: To evaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects ß-cell function and blood glucose homeostasis. RESEARCH DESIGN AND METHODS: We generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after ß-cell loss. RESULTS: Adult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. ß-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and ß-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive ß-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions. CONCLUSIONS: An extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme ß-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating ß-cells by reprogramming adult α-cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Secretoras de Glucagón/efectos de los fármacos , Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores de Glucagón/metabolismo , Transducción de Señal , Animales , Recuento de Células , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Toxina Diftérica/toxicidad , Glucagón/sangre , Glucagón/genética , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Factor de Crecimiento Similar a EGF de Unión a Heparina , Hiperglucemia/inducido químicamente , Hiperglucemia/prevención & control , Hipoglucemia/prevención & control , Insulina/sangre , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Transgénicos , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Regiones Promotoras Genéticas , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Estreptozocina/toxicidad , Tamoxifeno/farmacología
19.
FASEB J ; 24(11): 4613-26, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20647546

RESUMEN

Glucose-evoked mitochondrial signals augment ATP synthesis in the pancreatic ß cell. This activation of energy metabolism increases the cytosolic ATP/ADP ratio, which stimulates plasma membrane electrical activity and insulin granule exocytosis. We have recently demonstrated that matrix pH increases during nutrient stimulation of the pancreatic ß cell. Here, we have tested whether mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in the rat ß-cell line INS-1E. Acidification of the mitochondrial matrix pH by nigericin blunted nutrient-dependent respiratory and ATP responses (continuously monitored in intact cells). Using electrophysiology and single cell imaging, we find that the associated defects in energy metabolism suppress glucose-stimulated plasma membrane electrical activity and cytosolic calcium transients. The same parameters were unaffected after direct stimulation of electrical activity with tolbutamide, which bypasses mitochondrial function. Furthermore, lowered matrix pH strongly inhibited sustained, but not first-phase, insulin secretion. Our results demonstrate that the matrix pH exerts a control function on oxidative phosphorylation in intact cells and that this mode of regulation is of physiological relevance for the generation of downstream signals leading to insulin granule exocytosis. We propose that matrix pH serves a novel signaling role in sustained cell activation.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Glucosa/farmacología , Células HeLa , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Células Secretoras de Insulina/efectos de los fármacos , Ionóforos/farmacología , Nigericina/farmacología , Consumo de Oxígeno/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos
20.
Cell Metab ; 10(2): 110-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19656489

RESUMEN

Mutations in the transcription factor Pdx1 cause maturity-onset diabetes of the young 4 (MODY4). Islet transduction with dominant-negative Pdx1 (RIPDN79PDX1) impairs mitochondrial metabolism and glucose-stimulated insulin secretion (GSIS). Transcript profiling revealed suppression of nuclear-encoded mitochondrial factor A (TFAM). Herein, we show that Pdx1 suppression in adult mice reduces islet TFAM expression coinciding with hyperglycemia. We define TFAM as a direct target of Pdx1 both in rat INS1 cells and human islets. Adenoviral overexpression of TFAM along with RIPDN79PDX1 in isolated rat islets rescued mitochondrial DNA (mtDNA) copy number and restored respiratory chain activity as well as glucose-induced ATP synthesis and insulin secretion. CGP37157, which blocks the mitochondrial Na(+)/Ca(2+) exchanger, restored ATP generation and GSIS in RIPDN79PDX1 islets, thereby bypassing the transcriptional defect. Thus, the genetic control by the beta cell-specific factor Pdx1 of the ubiquitous gene TFAM maintains beta cell mtDNA vital for ATP production and normal GSIS.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Insulina/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Proteínas de Unión al ADN/genética , Doxiciclina/farmacología , Glucosa/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Secreción de Insulina , Islotes Pancreáticos/fisiología , Masculino , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Regiones Promotoras Genéticas , Ratas , Ratas Wistar , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/metabolismo , Transactivadores/deficiencia , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA