Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
J Neurosci ; 41(40): 8279-8296, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34413209

RESUMEN

Experience-dependent formation and removal of inhibitory synapses are essential throughout life. For instance, GABAergic synapses are removed to facilitate learning, and strong excitatory activity is accompanied by the formation of inhibitory synapses to maintain coordination between excitation and inhibition. We recently discovered that active dendrites trigger the growth of inhibitory synapses via CB1 receptor-mediated endocannabinoid signaling, but the underlying mechanism remained unclear. Using two-photon microscopy to monitor the formation of individual inhibitory boutons in hippocampal organotypic slices from mice (both sexes), we found that CB1 receptor activation mediated the formation of inhibitory boutons and promoted their subsequent stabilization. Inhibitory bouton formation did not require neuronal activity and was independent of Gi/o-protein signaling, but was directly induced by elevating cAMP levels using forskolin and by activating Gs-proteins using DREADDs. Blocking PKA activity prevented CB1 receptor-mediated inhibitory bouton formation. Our findings reveal that axonal CB1 receptors signal via unconventional downstream pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels. Our results demonstrate an unexpected role for axonal CB1 receptors in axon-specific, and context-dependent, inhibitory synapse formation.SIGNIFICANCE STATEMENT Coordination between excitation and inhibition is required for proper brain function throughout life. It was previously shown that new inhibitory synapses can be formed in response to strong excitation to maintain this coordination, and this was mediated by endocannabinoid signaling via CB1 receptors. As activation of CB1 receptors generally results in the suppression of synaptic transmission, it remained unclear how CB1 receptors can mediate the formation of inhibitory synapses. Here we show that CB1 receptors on inhibitory axons signal via unconventional intracellular pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels and requires PKA activity. Our findings point to a central role for axonal cAMP signaling in activity-dependent inhibitory synapse formation.


Asunto(s)
Axones/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Inhibición Neural/fisiología , Terminales Presinápticos/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Axones/química , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Femenino , Hipocampo/química , Hipocampo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Técnicas de Cultivo de Órganos , Terminales Presinápticos/química , Receptor Cannabinoide CB1/genética , Imagen de Lapso de Tiempo/métodos
2.
J Alzheimers Dis Rep ; 5(1): 153-160, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33981952

RESUMEN

The amyloid-ß protein precursor is highly expressed in a subset of inhibitory neuron in the hippocampus, and inhibitory neurons have been suggested to play an important role in early Alzheimer's disease plaque load. Here we investigated bouton dynamics in axons of hippocampal interneurons in two independent amyloidosis models. Short-term (24 h) amyloid-ß (Aß)-oligomer application to organotypic hippocampal slices slightly increased inhibitory bouton dynamics, but bouton density and dynamics were unchanged in hippocampus slices of young-adult App NL - F - G -mice, in which Aß levels are chronically elevated. These results indicate that loss or defective adaptation of inhibitory synapses are not a major contribution to Aß-induced hyperexcitability.

3.
J Alzheimers Dis ; 78(3): 951-964, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33074225

RESUMEN

BACKGROUND: In an early stage of Alzheimer's disease (AD), before the formation of amyloid plaques, neuronal network hyperactivity has been reported in both patients and animal models. This suggests an underlying disturbance of the balance between excitation and inhibition. Several studies have highlighted the role of somatic inhibition in early AD, while less is known about dendritic inhibition. OBJECTIVE: In this study we investigated how inhibitory synaptic currents are affected by elevated Aß levels. METHODS: We performed whole-cell patch clamp recordings of CA1 pyramidal neurons in organotypic hippocampal slice cultures after treatment with Aß-oligomers and in hippocampal brain slices from AppNL-F-G mice (APP-KI). RESULTS: We found a reduction of spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons in organotypic slices after 24 h Aß treatment. sIPSCs with slow rise times were reduced, suggesting a specific loss of dendritic inhibitory inputs. As miniature IPSCs and synaptic density were unaffected, these results suggest a decrease in activity-dependent transmission after Aß treatment. We observed a similar, although weaker, reduction in sIPSCs in CA1 pyramidal neurons from APP-KI mice compared to control. When separated by sex, the strongest reduction in sIPSC frequency was found in slices from male APP-KI mice. Consistent with hyperexcitability in pyramidal cells, dendritically targeting interneurons received slightly more excitatory input. GABAergic action potentials had faster kinetics in APP-KI slices. CONCLUSION: Our results show that Aß affects dendritic inhibition via impaired action potential driven release, possibly due to altered kinetics of GABAergic action potentials. Reduced dendritic inhibition may contribute to neuronal hyperactivity in early AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Dendritas/metabolismo , Potenciales Postsinápticos Inhibidores/genética , Fragmentos de Péptidos/metabolismo , Células Piramidales/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Amiloidosis , Animales , Región CA1 Hipocampal/citología , Dendritas/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Ratones , Ratones Transgénicos , Microscopía Confocal , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos
4.
J Neurosci ; 39(22): 4221-4237, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-30914448

RESUMEN

Changes in inhibitory connections are essential for experience-dependent circuit adaptations. Defects in inhibitory synapses are linked to neurodevelopmental disorders, but the molecular processes underlying inhibitory synapse formation are not well understood. Here we use high-resolution two-photon microscopy in organotypic hippocampal slices from GAD65-GFP mice of both sexes to examine the signaling pathways induced by the postsynaptic signaling molecule Semaphorin4D (Sema4D) during inhibitory synapse formation. By monitoring changes in individual GFP-labeled presynaptic boutons, we found that the primary action of Sema4D is to induce stabilization of presynaptic boutons within tens of minutes. Stabilized boutons rapidly recruited synaptic vesicles, followed by accumulation of postsynaptic gephyrin and were functional after 24 h, as determined by electrophysiology and immunohistochemistry. Inhibitory boutons are only sensitive to Sema4D at a specific stage during synapse formation and sensitivity to Sema4D is regulated by network activity. We further examined the intracellular signaling cascade triggered by Sema4D and found that bouton stabilization occurs through rapid remodeling of the actin cytoskeleton. This could be mimicked by the actin-depolymerizing drug latrunculin B or by reducing ROCK activity. We discovered that the intracellular signaling cascade requires activation of the receptor tyrosine kinase MET, which is a well known autism risk factor. By using a viral approach to reduce MET levels specifically in inhibitory neurons, we found that their axons are no longer sensitive to Sema4D signaling. Together, our data yield important insights into the molecular pathway underlying activity-dependent Sema4D-induced synapse formation and reveal a novel role for presynaptic MET at inhibitory synapses.SIGNIFICANCE STATEMENT GABAergic synapses provide the main inhibitory control of neuronal activity in the brain. We wanted to unravel the sequence of molecular events that take place when formation of inhibitory synapses is triggered by a specific signaling molecule, Sema4D. We find that this signaling pathway depends on network activity and involves specific remodeling of the intracellular actin cytoskeleton. We also reveal a previously unknown role for MET at inhibitory synapses. Our study provides novel insights into the dynamic process of inhibitory synapse formation. As defects in GABAergic synapses have been implied in many brain disorders, and mutations in MET are strong risk factors for autism, our findings urge for a further investigation of the role of MET at inhibitory synapses.


Asunto(s)
Antígenos CD/metabolismo , Neurogénesis/fisiología , Terminales Presinápticos/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Semaforinas/metabolismo , Sinapsis/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Técnicas de Cultivo de Órganos
5.
Cell Rep ; 13(5): 933-43, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26565907

RESUMEN

Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs) at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C) or myosin (MyosinV/VI) motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.


Asunto(s)
Endosomas/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Femenino , Cinesinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miosinas/metabolismo , Ratas , Receptores AMPA/genética , Sinapsis/ultraestructura , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
6.
PLoS One ; 5(12): e15915, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21209836

RESUMEN

The use of transgenic mice in which subtypes of neurons are labeled with a fluorescent protein has greatly facilitated modern neuroscience research. GAD65-GFP mice, which have GABAergic interneurons labeled with GFP, are widely used in many research laboratories, although the properties of the labeled cells have not been studied in detail. Here we investigate these cells in the hippocampal area CA1 and show that they constitute ∼20% of interneurons in this area. The majority of them expresses either reelin (70±2%) or vasoactive intestinal peptide (VIP; 15±2%), while expression of parvalbumin and somatostatin is virtually absent. This strongly suggests they originate from the caudal, and not the medial, ganglionic eminence. GFP-labeled interneurons can be subdivided according to the (partially overlapping) expression of neuropeptide Y (42±3%), cholecystokinin (25±3%), calbindin (20±2%) or calretinin (20±2%). Most of these subtypes (with the exception of calretinin-expressing interneurons) target the dendrites of CA1 pyramidal cells. GFP-labeled interneurons mostly show delayed onset of firing around threshold, and regular firing with moderate frequency adaptation at more depolarized potentials.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Electrofisiología/métodos , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Animales , Calbindina 2 , Calbindinas , Moléculas de Adhesión Celular Neuronal/metabolismo , Colecistoquinina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glutamato Descarboxilasa/genética , Hipocampo/metabolismo , Inmunohistoquímica/métodos , Interneuronas/metabolismo , Potenciales de la Membrana , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuropéptido Y/metabolismo , Técnicas de Placa-Clamp , Ratas , Proteína Reelina , Proteína G de Unión al Calcio S100/metabolismo , Serina Endopeptidasas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA