Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Ann Surg ; 277(3): e634-e647, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129518

RESUMEN

OBJECTIVE: This work addressing complexities in wound infection, seeks to test the reliance of bacterial pathogen Pseudomonas aeruginosa (PA) on host skin lipids to form biofilm with pathological consequences. BACKGROUND: PA biofilm causes wound chronicity. Both CDC as well as NIH recognizes biofilm infection as a threat leading to wound chronicity. Chronic wounds on lower extremities often lead to surgical limb amputation. METHODS: An established preclinical porcine chronic wound biofilm model, infected with PA or Pseudomonas aeruginosa ceramidase mutant (PA ∆Cer ), was used. RESULTS: We observed that bacteria drew resource from host lipids to induce PA ceramidase expression by three orders of magnitude. PA utilized product of host ceramide catabolism to augment transcription of PA ceramidase. Biofilm formation was more robust in PA compared to PA ∆Cer . Downstream products of such metabolism such as sphingosine and sphingosine-1-phosphate were both directly implicated in the induction of ceramidase and inhibition of peroxisome proliferator-activated receptor (PPAR)δ, respectively. PA biofilm, in a ceram-idastin-sensitive manner, also silenced PPARδ via induction of miR-106b. Low PPARδ limited ABCA12 expression resulting in disruption of skin lipid homeostasis. Barrier function of the wound-site was thus compromised. CONCLUSIONS: This work demonstrates that microbial pathogens must co-opt host skin lipids to unleash biofilm pathogenicity. Anti-biofilm strategies must not necessarily always target the microbe and targeting host lipids at risk of infection could be productive. This work may be viewed as a first step, laying fundamental mechanistic groundwork, toward a paradigm change in biofilm management.


Asunto(s)
PPAR delta , Pseudomonas aeruginosa , Animales , Ceramidasas , Extremidad Inferior , Porcinos
2.
J Trauma Acute Care Surg ; 88(4): 508-514, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31688825

RESUMEN

BACKGROUND: Accurate medication reconciliation in trauma patients is essential but difficult. Currently, there is no established clinical method of detecting direct oral anticoagulants (DOACs) in trauma patients. We hypothesized that a liquid chromatography-mass spectrometry (LCMS)-based assay can be used to accurately detect DOACs in trauma patients upon hospital arrival. METHODS: Plasma samples were collected from 356 patients who provided informed consent including 10 healthy controls, 19 known positive or negative controls, and 327 trauma patients older than 65 years who were evaluated at our large, urban level 1 trauma center. The assay methodology was developed in healthy and known controls to detect apixaban, rivaroxaban, and dabigatran using LCMS and then applied to 327 samples from trauma patients. Standard medication reconciliation processes in the electronic medical record documenting DOAC usage were compared with LCMS results to determine overall accuracy, sensitivity, specificity, and positive and negative predictive values (PPV, NPV) of the assay. RESULTS: Of 356 patients, 39 (10.96%) were on DOACs: 21 were on apixaban, 14 on rivaroxaban, and 4 on dabigatran. The overall accuracy of the assay for detecting any DOAC was 98.60%, with a sensitivity of 94.87% and specificity of 99.05% (PPV, 92.50%; NPV, 99.37%). The assay detected apixaban with a sensitivity of 90.48% and specificity of 99.10% (PPV, 86.36%; NPV 99.40%). There were three false-positive results and two false-negative LCMS results for apixaban. Dabigatran and rivaroxaban were detected with 100% sensitivity and specificity. CONCLUSION: This LCMS-based assay was highly accurate in detecting DOACs in trauma patients. Further studies need to confirm the clinical efficacy of this LCMS assay and its value for medication reconciliation in trauma patients. LEVEL OF EVIDENCE: Diagnostic Test, level III.


Asunto(s)
Anticoagulantes/sangre , Espectrometría de Masas , Conciliación de Medicamentos/métodos , Heridas y Lesiones/sangre , Administración Oral , Anciano , Anticoagulantes/administración & dosificación , Cromatografía Líquida de Alta Presión , Dabigatrán/administración & dosificación , Dabigatrán/sangre , Femenino , Voluntarios Sanos , Humanos , Masculino , Estudios Prospectivos , Pirazoles/administración & dosificación , Pirazoles/sangre , Piridonas/administración & dosificación , Piridonas/sangre , Rivaroxabán/administración & dosificación , Rivaroxabán/sangre , Sensibilidad y Especificidad
3.
Cancers (Basel) ; 11(8)2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31349646

RESUMEN

The clinical outcome of allogeneic hematopoietic stem cell transplantation (SCT) may be influenced by the metabolic status of the recipient following conditioning, which in turn may enable risk stratification with respect to the development of transplant-associated complications such as graft vs. host disease (GVHD). To better understand the impact of the metabolic profile of transplant recipients on post-transplant alloreactivity, we investigated the metabolic signature of 14 patients undergoing myeloablative conditioning followed by either human leukocyte antigen (HLA)-matched related or unrelated donor SCT, or autologous SCT. Blood samples were taken following conditioning and prior to transplant on day 0 and the plasma was comprehensively characterized with respect to its lipidome and metabolome via liquid chromatography/mass spectrometry (LCMS) and gas chromatography/mass spectrometry (GCMS). A pro-inflammatory metabolic profile was observed in patients who eventually developed GVHD. Five potential pre-transplant biomarkers, 2-aminobutyric acid, 1-monopalmitin, diacylglycerols (DG 38:5, DG 38:6), and fatty acid FA 20:1 demonstrated high sensitivity and specificity towards predicting post-transplant GVHD. The resulting predictive model demonstrated an estimated predictive accuracy of risk stratification of 100%, with area under the curve of the ROC of 0.995. The likelihood ratio of 1-monopalmitin (infinity), DG 38:5 (6.0), and DG 38:6 (6.0) also demonstrated that a patient with a positive test result for these biomarkers following conditioning and prior to transplant will be at risk of developing GVHD. Collectively, the data suggest the possibility that pre-transplant metabolic signature may be used for risk stratification of SCT recipients with respect to development of alloreactivity.

4.
World J Emerg Surg ; 14: 5, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30815027

RESUMEN

Background: Medication errors account for the most common adverse events and a significant cause of mortality in the USA. The Joint Commission has required medication reconciliation since 2006. We aimed to survey the literature and determine the challenges and effectiveness of medication reconciliation in the trauma patient population. Materials and methods: We conducted a systematic review of the literature to determine the effectiveness of medication reconciliation in trauma patients. English language articles were retrieved from PubMed/Medline, CINAHL, and Cochrane Review databases with search terms "trauma OR injury, AND medication reconciliation OR med rec OR med rek, AND effectiveness OR errors OR intervention OR improvements." Results: The search resulted in 82 articles. After screening for relevance and duplicates, the 43 remaining were further reviewed, and only four articles, which presented results on medication reconciliation in 3041 trauma patients, were included. Two were retrospective and two were prospective. Two showed only 4% accuracy at time of admission with 48% of medication reconciliations having at least one medication discrepancy. There were major differences across the studies prohibiting comparative statistical analysis. Conclusions: Trauma medication reconciliation is important because of the potential for adverse outcomes given the emergent nature of the illness. The few articles published at this time on medication reconciliation in trauma suggest poor accuracy. Numerous strategies have been implemented in general medicine to improve its accuracy, but these have not yet been studied in trauma. This topic is an important but unrecognized area of research in this field.


Asunto(s)
Sistemas de Medicación/normas , Seguridad del Paciente/normas , Humanos , Errores de Medicación/mortalidad , Errores de Medicación/prevención & control , Conciliación de Medicamentos/métodos , Conciliación de Medicamentos/normas , Sistemas de Medicación/tendencias , Centros Traumatológicos/organización & administración , Centros Traumatológicos/normas
5.
Cell Rep ; 26(13): 3709-3725.e7, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917323

RESUMEN

Mitochondrial Ca2+ uniporter (MCU)-mediated Ca2+ uptake promotes the buildup of reducing equivalents that fuel oxidative phosphorylation for cellular metabolism. Although MCU modulates mitochondrial bioenergetics, its function in energy homeostasis in vivo remains elusive. Here we demonstrate that deletion of the Mcu gene in mouse liver (MCUΔhep) and in Danio rerio by CRISPR/Cas9 inhibits mitochondrial Ca2+ (mCa2+) uptake, delays cytosolic Ca2+ (cCa2+) clearance, reduces oxidative phosphorylation, and leads to increased lipid accumulation. Elevated hepatic lipids in MCUΔhep were a direct result of extramitochondrial Ca2+-dependent protein phosphatase-4 (PP4) activity, which dephosphorylates AMPK. Loss of AMPK recapitulates hepatic lipid accumulation without changes in MCU-mediated Ca2+ uptake. Furthermore, reconstitution of active AMPK, or PP4 knockdown, enhances lipid clearance in MCUΔhep hepatocytes. Conversely, gain-of-function MCU promotes rapid mCa2+ uptake, decreases PP4 levels, and reduces hepatic lipid accumulation. Thus, our work uncovers an MCU/PP4/AMPK molecular cascade that links Ca2+ dynamics to hepatic lipid metabolism.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Proteínas Mitocondriales/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Canales de Calcio/genética , Células Cultivadas , Femenino , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , Pez Cebra
6.
World J Crit Care Med ; 6(1): 37-47, 2017 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-28224106

RESUMEN

AIM: To examine the effect of high doses of vitamin C (VitC) on ex vivo human platelets (PLTs). METHODS: Platelet concentrates collected for therapeutic or prophylactic transfusions were exposed to: (1) normal saline (control); (2) 0.3 mmol/L VitC (Lo VitC); or (3) 3 mmol/L VitC (Hi VitC, final concentrations) and stored appropriately. The VitC additive was preservative-free buffered ascorbic acid in water, pH 5.5 to 7.0, adjusted with sodium bicarbonate and sodium hydroxide. The doses of VitC used here correspond to plasma VitC levels reported in recently completed clinical trials. Prior to supplementation, a baseline sample was collected for analysis. PLTs were sampled again on days 2, 5 and 8 and assayed for changes in PLT function by: Thromboelastography (TEG), for changes in viscoelastic properties; aggregometry, for PLT aggregation and adenosine triphosphate (ATP) secretion in response to collagen or adenosine diphosphate (ADP); and flow cytometry, for changes in expression of CD-31, CD41a, CD62p and CD63. In addition, PLT intracellular VitC content was measured using a fluorimetric assay for ascorbic acid and PLT poor plasma was used for plasma coagulation tests [prothrombin time (PT), partial thrombplastin time (PTT), functional fibrinogen] and Lipidomics analysis (UPLC ESI-MS/MS). RESULTS: VitC supplementation significantly increased PLTs intracellular ascorbic acid levels from 1.2 mmol/L at baseline to 3.2 mmol/L (Lo VitC) and 15.7 mmol/L (Hi VitC, P < 0.05). VitC supplementation did not significantly change PT and PTT values, or functional fibrinogen levels over the 8 d exposure period (P > 0.05). PLT function assayed by TEG, aggregometry and flow cytometry was not significantly altered by Lo or Hi VitC for up to 5 d. However, PLTs exposed to 3 mmol/L VitC for 8 d demonstrated significantly increased R and K times by TEG and a decrease in the α-angle (P < 0.05). There was also a fall of 20 mm in maximum amplitude associated with the Hi VitC compared to both baseline and day 8 saline controls. Platelet aggregation studies, showed uniform declines in collagen and ADP-induced platelet aggregations over the 8-d study period in all three groups (P > 0.05). Collagen and ADP-induced ATP secretion was also not different between the three groups (P > 0.05). Finally, VitC at the higher dose (3 mmol/L) also induced the release of several eicosanoids including thromboxane B2 and prostaglandin E2, as well as products of arachidonic acid metabolism via the lipoxygenases pathway such as 11-/12-/15-hydroxyicosatetraenoic acid (P < 0.05). CONCLUSION: Alterations in PLT function by exposure to 3 mmol/L VitC for 8 d suggest that caution should be exerted with prolonged use of intravenous high dose VitC.

7.
J Hepatol ; 65(3): 579-88, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27261415

RESUMEN

BACKGROUND & AIMS: The lack of a preclinical model of progressive non-alcoholic steatohepatitis (NASH) that recapitulates human disease is a barrier to therapeutic development. METHODS: A stable isogenic cross between C57BL/6J (B6) and 129S1/SvImJ (S129) mice were fed a high fat diet with ad libitum consumption of glucose and fructose in physiologically relevant concentrations and compared to mice fed a chow diet and also to both parent strains. RESULTS: Following initiation of the obesogenic diet, B6/129 mice developed obesity, insulin resistance, hypertriglyceridemia and increased LDL-cholesterol. They sequentially also developed steatosis (4-8weeks), steatohepatitis (16-24weeks), progressive fibrosis (16weeks onwards) and spontaneous hepatocellular cancer (HCC). There was a strong concordance between the pattern of pathway activation at a transcriptomic level between humans and mice with similar histological phenotypes (FDR 0.02 for early and 0.08 for late time points). Lipogenic, inflammatory and apoptotic signaling pathways activated in human NASH were also activated in these mice. The HCC gene signature resembled the S1 and S2 human subclasses of HCC (FDR 0.01 for both). Only the B6/129 mouse but not the parent strains recapitulated all of these aspects of human NAFLD. CONCLUSIONS: We here describe a diet-induced animal model of non-alcoholic fatty liver disease (DIAMOND) that recapitulates the key physiological, metabolic, histologic, transcriptomic and cell-signaling changes seen in humans with progressive NASH. LAY SUMMARY: We have developed a diet-induced mouse model of non-alcoholic steatohepatitis (NASH) and hepatic cancers in a cross between two mouse strains (129S1/SvImJ and C57Bl/6J). This model mimics all the physiological, metabolic, histological, transcriptomic gene signature and clinical endpoints of human NASH and can facilitate preclinical development of therapeutic targets for NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Carcinoma Hepatocelular , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Humanos , Hígado , Neoplasias Hepáticas , Ratones , Ratones Endogámicos C57BL
8.
Mediators Inflamm ; 2014: 173403, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25294953

RESUMEN

INTRODUCTION: Macrophage reprogramming is vital for resolution of acute inflammation. Parenteral vitamin C (VitC) attenuates proinflammatory states in murine and human sepsis. However information about the mechanism by which VitC regulates resolution of inflammation is limited. METHODS: To examine whether physiological levels of VitC modulate resolution of inflammation, we used transgenic mice lacking L-gulono-γ-lactone oxidase. VitC sufficient/deficient mice were subjected to a thioglycollate-elicited peritonitis model of sterile inflammation. Some VitC deficient mice received daily parenteral VitC (200 mg/kg) for 3 or 5 days following thioglycollate infusion. Peritoneal macrophages harvested on day 3 or day 5 were examined for intracellular VitC levels, pro- and anti-inflammatory protein and lipid mediators, mitochondrial function, and response to lipopolysaccharide (LPS). The THP-1 cell line was used to determine the modulatory activities of VitC in activated human macrophages. RESULTS: VitC deficiency significantly delayed resolution of inflammation and generated an exaggerated proinflammatory response to in vitro LPS stimulation. VitC sufficiency and in vivo VitC supplementation restored macrophage phenotype and function in VitC deficient mice. VitC loading of THP-1 macrophages attenuated LPS-induced proinflammatory responses. CONCLUSION: VitC sufficiency favorably modulates macrophage function. In vivo or in vitro VitC supplementation restores macrophage phenotype and function leading to timely resolution of inflammation.


Asunto(s)
Ácido Ascórbico/metabolismo , Ácido Ascórbico/uso terapéutico , Inflamación/tratamiento farmacológico , Animales , Western Blotting , Línea Celular , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Peritonitis/inducido químicamente , Peritonitis/tratamiento farmacológico , Peritonitis/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Tioglicolatos/toxicidad
9.
J Hypertens ; 32(5): 1050-8; discussion 1058, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24569415

RESUMEN

OBJECTIVE: Long-chain n-3 polyunsaturated fatty acids from oily fish reduce blood pressure (BP) in hypertension. Previously, we demonstrated that hypertension is associated with marked alterations in sphingolipid biology and elevated ceramide-induced vasoconstriction. Here we investigated in spontaneously hypertensive rats (SHRs) whether fish oil improves endothelial function including reduced vascular contraction induced via the sphingolipid cascade, resulting in reduced BP. METHODS: Twelve-week-old SHRs were fed a control or fish oil-enriched diet during 12 weeks, and BP was recorded. Plasma sphingolipid levels were quantified by mass spectrometry and the response of isolated carotid arteries towards different stimuli was measured. Furthermore, erythrocyte membrane fatty acid composition, thromboxane A2 formation and cytokine secretion in ex-vivo lipopolysaccharide-stimulated thoracic aorta segments were determined. RESULTS: The fish oil diet reduced the mean arterial BP (P < 0.001) and improved endothelial function, as indicated by a substantially increased relaxation potential towards ex-vivo methacholine exposure of the carotid arteries (P < 0.001). The long-chain n-3 polyunsaturated fatty acid diet resulted in altered levels of specific (glucosyl)ceramide subspecies (P < 0.05), reduced membrane arachidonic acid content (P < 0.001) and decreased thromboxane concentrations in plasma (P < 0.01). Concomitantly, the fish oil diet largely reduced ceramide-induced contractions (P < 0.01), which are predominantly mediated by thromboxane. Furthermore, thromboxane A2 and interleukin-10 were reduced in supernatants of lipopolysaccharide-stimulated thoracic aorta of SHRs fed the fish oil diet while RANTES (regulated on activation, normal T-cell expressed and secreted) was enhanced. This may contribute to reduced vasoconstriction in vivo. CONCLUSIONS: Dietary fish oil lowers BP in SHRs and improves endothelial function in association with suppression of sphingolipid-dependent vascular contraction.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Grasas Insaturadas en la Dieta/farmacología , Endotelio Vascular/efectos de los fármacos , Aceites de Pescado/farmacología , Esfingolípidos/fisiología , Animales , Cromatografía Liquida , Espectrometría de Masas , Contracción Muscular/efectos de los fármacos , Ratas , Ratas Endogámicas SHR , Esfingomielina Fosfodiesterasa/metabolismo , Tromboxano B2/sangre
10.
Nature ; 500(7463): 463-7, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23863933

RESUMEN

Phosphorylated sphingolipids ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P) have emerged as key regulators of cell growth, survival, migration and inflammation. C1P produced by ceramide kinase is an activator of group IVA cytosolic phospholipase A2α (cPLA2α), the rate-limiting releaser of arachidonic acid used for pro-inflammatory eicosanoid production, which contributes to disease pathogenesis in asthma or airway hyper-responsiveness, cancer, atherosclerosis and thrombosis. To modulate eicosanoid action and avoid the damaging effects of chronic inflammation, cells require efficient targeting, trafficking and presentation of C1P to specific cellular sites. Vesicular trafficking is likely but non-vesicular mechanisms for C1P sensing, transfer and presentation remain unexplored. Moreover, the molecular basis for selective recognition and binding among signalling lipids with phosphate headgroups, namely C1P, phosphatidic acid or their lyso-derivatives, remains unclear. Here, a ubiquitously expressed lipid transfer protein, human GLTPD1, named here CPTP, is shown to specifically transfer C1P between membranes. Crystal structures establish C1P binding through a novel surface-localized, phosphate headgroup recognition centre connected to an interior hydrophobic pocket that adaptively expands to ensheath differing-length lipid chains using a cleft-like gating mechanism. The two-layer, α-helically-dominated 'sandwich' topology identifies CPTP as the prototype for a new glycolipid transfer protein fold subfamily. CPTP resides in the cell cytosol but associates with the trans-Golgi network, nucleus and plasma membrane. RNA interference-induced CPTP depletion elevates C1P steady-state levels and alters Golgi cisternae stack morphology. The resulting C1P decrease in plasma membranes and increase in the Golgi complex stimulates cPLA2α release of arachidonic acid, triggering pro-inflammatory eicosanoid generation.


Asunto(s)
Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Eicosanoides/metabolismo , Animales , Apoproteínas/química , Ácido Araquidónico/metabolismo , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Ceramidas/química , Cristalografía por Rayos X , Citosol/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/metabolismo , Proteínas de Transferencia de Fosfolípidos , Conformación Proteica , Pliegue de Proteína , Especificidad por Sustrato , Red trans-Golgi/metabolismo
11.
J Cereb Blood Flow Metab ; 33(8): 1197-206, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23632968

RESUMEN

Glutathione depletion and 12-lipoxygenase-dependent metabolism of arachidonic acid are known to be implicated in neurodegeneration associated with acute ischemic stroke. The objective of this study was to investigate the significance of miR-29 in neurodegeneration associated with acute ischemic stroke. Neural cell death caused by arachidonic acid insult of glutathione-deficient cells was preceded by a 12-lipoxygenase-dependent loss of miR-29b. Delivery of miR-29b mimic to blunt such loss was neuroprotective. miR-29b inhibition potentiated such neural cell death. 12-Lipoxygenase knockdown and inhibitors attenuated the loss of miR-29b in challenged cells. In vivo, stroke caused by middle-cerebral artery occlusion was followed by higher 12-lipoxygenase activity and loss of miR-29b as detected in laser-captured infarct site tissue. 12-Lipoxygenase knockout mice demonstrated protection against such miR loss. miR-29b gene delivery markedly attenuated stroke-induced brain lesion. Oral supplementation of α-tocotrienol, a vitamin E 12-lipoxygenase inhibitor, rescued stroke-induced loss of miR-29b and minimized lesion size. This work provides the first evidence demonstrating that loss of miR-29b at the infarct site is a key contributor to stroke lesion. Such loss is contributed by activity of the 12-lipoxygenase pathway providing maiden evidence linking arachidonic acid metabolism to miR-dependent mechanisms in stroke.


Asunto(s)
Isquemia Encefálica/genética , Isquemia Encefálica/patología , Muerte Celular/genética , Muerte Celular/fisiología , Infarto Cerebral/genética , Infarto Cerebral/patología , MicroARNs/genética , MicroARNs/fisiología , Neuronas/patología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Animales , Antioxidantes/farmacología , Araquidonato 12-Lipooxigenasa/fisiología , Western Blotting , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Eicosanoides/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Glutatión/metabolismo , Imagen por Resonancia Magnética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , Embarazo , ARN/biosíntesis , ARN/aislamiento & purificación , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Tocotrienoles/farmacología , Transfección
12.
Circ Heart Fail ; 6(1): 136-44, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23152488

RESUMEN

BACKGROUND: Right ventricular (RV) dysfunction (RVD) is the most frequent cause of death in patients with pulmonary arterial hypertension. Although abnormal energy substrate use has been implicated in the development of chronic left heart failure, data describing such metabolic remodeling in RVD remain incomplete. Thus, we sought to characterize metabolic gene expression changes and mitochondrial dysfunction in functional and dysfunctional RV hypertrophy. METHODS AND RESULTS: Two different rat models of RV hypertrophy were studied. The model of RVD (SU5416/hypoxia) exhibited a significantly decreased gene expression of peroxisome proliferator-activated receptor-γ coactivator-1α, peroxisome proliferator-activated receptor-α and estrogen-related receptor-α. The expression of multiple peroxisome proliferator-activated receptor-γ coactivator-1α target genes required for fatty acid oxidation was similarly decreased. Decreased peroxisome proliferator-activated receptor-γ coactivator-1α expression was also associated with a net loss of mitochondrial protein and oxidative capacity. Reduced mitochondrial number was associated with a downregulation of transcription factor A, mitochondrial, and other genes required for mitochondrial biogenesis. Electron microscopy demonstrated that, in RVD tissue, mitochondria had abnormal shape and size. Lastly, respirometric analysis demonstrated that mitochondria isolated from RVD tissue had a significantly reduced ADP-stimulated (state 3) rate for complex I. Conversely, functional RV hypertrophy in the pulmonary artery banding model showed normal expression of peroxisome proliferator-activated receptor-γ coactivator-1α, whereas the expression of fatty acid oxidation genes was either preserved or unregulated. Moreover, pulmonary artery banding-RV tissue exhibited preserved transcription factor A mitochondrial expression and mitochondrial respiration despite elevated RV pressure-overload. CONCLUSIONS: Right ventricular dysfunction, but not functional RV hypertrophy in rats, demonstrates a gene expression profile compatible with a multilevel impairment of fatty acid metabolism and significant mitochondrial dysfunction, partially independent of chronic pressure-overload.


Asunto(s)
Insuficiencia Cardíaca/genética , Hipertensión Pulmonar/genética , Hipertrofia Ventricular Derecha/genética , Mitocondrias Cardíacas/genética , Recambio Mitocondrial/genética , Miocitos Cardíacos/metabolismo , Remodelación Ventricular/genética , Animales , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/metabolismo , Hipertrofia Ventricular Derecha/complicaciones , Hipertrofia Ventricular Derecha/metabolismo , Masculino , Mitocondrias Cardíacas/metabolismo , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley
13.
Int J Med Chem ; 2013: 203606, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24729874

RESUMEN

DHEA, 17α-AED, 17ß-AED, and 17ß-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17ß-AED, and 17ß-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERß may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects.

14.
J Biol Chem ; 286(50): 42808-17, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22009748

RESUMEN

Tumor necrosis factor α (TNFα) is a well known cytokine involved in systemic and acute inflammation. In this study, we demonstrate that ceramide 1-phosphate (C1P) produced by ceramide kinase (CERK) is a negative regulator of LPS-induced TNFα secretion. Specifically, bone marrow-derived macrophages isolated from CERK knock-out mice (CERK(-/-)) generated higher levels of TNFα than the wild-type mice (CERK(+/+)) in response to LPS. An increase in basal TNFα secretion was also observed in CERK(-/-) murine embryonic fibroblasts, which was rescued by re-expression of wild-type CERK. This effect was due to increased secretion and not transcription. The secretion of TNFα is regulated by TNFα-converting enzyme (TACE also known as ADAM17), and importantly, the activity of TACE was higher in cell extracts from CERK(-/-) as compared with wild type. In vitro analysis also demonstrated that C1P is a potent inhibitor of this enzyme, in stark contrast to ceramide and sphingosine 1-phosphate. Furthermore, TACE specifically bound C1P with high affinity. Finally, several putative C1P-binding sites were identified via homology throughout the protein sequence of TACE. These results indicate that C1P produced by CERK has a negative effect on the processing/secretion of TNFα via modulation of TACE activity.


Asunto(s)
Proteínas ADAM/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Proteína ADAM17 , Animales , Células Cultivadas , Ceramidas/farmacología , Femenino , Ratones , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Embarazo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Necrosis Tumoral alfa/genética
15.
Mol Cancer Res ; 9(7): 889-900, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21622622

RESUMEN

Increasing evidence points to the functional importance of alternative splice variations in cancer pathophysiology with the alternative pre-mRNA processing of caspase 9 as one example. In this study, we delve into the underlying molecular mechanisms that regulate the alternative splicing of caspase 9. Specifically, the pre-mRNA sequence of caspase 9 was analyzed for RNA cis-elements known to interact with SRSF1, a required enhancer for caspase 9 RNA splicing. This analysis revealed 13 possible RNA cis-elements for interaction with SRSF1 with mutagenesis of these RNA cis-elements identifying a strong intronic splicing enhancer located in intron 6 (C9-I6/ISE). SRSF1 specifically interacted with this sequence, which was required for SRSF1 to act as a splicing enhancer of the inclusion of the 4 exon cassette. To further determine the biological importance of this mechanism, we employed RNA oligonucleotides to redirect caspase 9 pre-mRNA splicing in favor of caspase 9b expression, which resulted in an increase in the IC(50) of non-small cell lung cancer (NSCLC) cells to daunorubicin, cisplatinum, and paclitaxel. In contrast, downregulation of caspase 9b induced a decrease in the IC(50) of these chemotherapeutic drugs. Finally, these studies showed that caspase 9 RNA splicing was a major mechanism for the synergistic effects of combination therapy with daunorubicin and erlotinib. Overall, we have identified a novel intronic splicing enhancer that regulates caspase 9 RNA splicing and specifically interacts with SRSF1. Furthermore, we showed that the alternative splicing of caspase 9 is an important molecular mechanism with therapeutic relevance to NSCLCs.


Asunto(s)
Empalme Alternativo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Caspasa 9/genética , Daunorrubicina/uso terapéutico , Enfermedades Pulmonares/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Quinazolinas/uso terapéutico , Proteínas de Unión al ARN/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Elementos de Facilitación Genéticos , Clorhidrato de Erlotinib , Células HeLa , Humanos , Intrones/genética , Enfermedades Pulmonares/genética , Proteínas Nucleares/genética , Paclitaxel/uso terapéutico , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , ARN sin Sentido/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina
16.
J Lipid Res ; 51(3): 641-51, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19654423

RESUMEN

Ceramide-1-phosphate (C1P) is a bioactive sphingolipid with roles in several biological processes. Currently, high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC ESI-MS/MS) offers the most efficient method of quantifying C1P. However, the published protocols have several drawbacks causing overestimations and carryovers. Here, the reported overestimation of C1P was shown to be due to incomplete neutralization of base hydrolyzed lipid extracts leading to the hydrolysis of SM to C1P. Actual quantity of C1P in cells (6 pmols/10(6) cells) was much lower than previously reported. Also, the major species of C1P produced by ceramide kinase (CERK) was found to be d(18:1/16:0) with a minority of d(18:1/24:1) and d(18:1/24:0). The artifactual production of C1P from SM was used for generating C1Ps as retention time markers. Elimination of carryovers between samples and a 2-fold enhancement in the signal strength was achieved by heating the chromatographic column to 60 (degrees) C. The role of ceramide transport protein (CERT) in supplying substrate to CERK was also revalidated using this new assay. Finally, our results demonstrate the presence of additional pathway(s) for generation of the C1P subspecies, d(18:1/18:0) C1P, as well as a significant portion of d(18:1/16:0), d(18:1/24:1), and d(18:1/24:0). In conclusion, this study introduces a much improved and validated method for detection of C1P by mass spectrometry and demonstrates specific changes in the C1P subspecies profiles upon downregulation of CERK and CERT.


Asunto(s)
Ceramidas/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Amidas/farmacología , Artefactos , Secuencia de Bases , Línea Celular Tumoral , Ceramidas/biosíntesis , Ceramidas/química , Cromatografía de Fase Inversa , Humanos , Hidrólisis , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Reproducibilidad de los Resultados , Esfingomielinas/metabolismo , Temperatura
17.
J Biol Chem ; 284(39): 26897-907, 2009 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-19632995

RESUMEN

Little is known about the regulation of eicosanoid synthesis proximal to the activation of cytosolic phospholipase A(2)alpha (cPLA(2)alpha), the initial rate-limiting step. The current view is that cPLA(2)alpha associates with intracellular/phosphatidylcholine-rich membranes strictly via hydrophobic interactions in response to an increase of intracellular calcium. In opposition to this accepted mechanism of two decades, ceramide 1-phosphate (C1P) has been shown to increase the membrane association of cPLA(2)alpha in vitro via a novel site in the cationic beta-groove of the C2 domain (Stahelin, R. V., Subramanian, P., Vora, M., Cho, W., and Chalfant, C. E. (2007) J. Biol. Chem. 282, 20467-204741). In this study we demonstrate that C1P is a proximal and required bioactive lipid for the translocation of cPLA(2)alpha to intracellular membranes in response to inflammatory agonists (e.g. calcium ionophore and ATP). Last, the absolute requirement of the C1P/cPLA(2)alpha interaction was demonstrated for the production of eicosanoids using murine embryonic fibroblasts (cPLA(2)alpha(-/-)) coupled to "rescue" studies. Therefore, this study provides a paradigm shift in how cPLA(2)alpha is activated during inflammation.


Asunto(s)
Ceramidas/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Prostaglandinas/biosíntesis , Adenosina Trifosfato/farmacología , Animales , Calcio/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fosfolipasas A2 Grupo IV/genética , Humanos , Immunoblotting , Interleucina-1beta/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Microscopía Confocal , Mutación , Embarazo , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , Transfección
18.
J Lipid Res ; 50(10): 1986-95, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19075030

RESUMEN

Previously, our laboratory demonstrated that ceramide-1-phosphate (C1P) specifically activated group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) in vitro. In this study, we investigated the chain length specificity of this interaction. C1P with an acyl-chain of >or=6 carbons efficiently activated cPLA(2)alpha in vitro, whereas C(2)-C1P, was unable to do so. Delivery of C1P to cells via the newly characterized ethanol/dodecane system demonstrated a lipid-specific activation of cPLA(2)alpha, AA release, and PGE(2) synthesis (EC(50) = 400 nM) when compared to structurally similar lipids. C1P delivered as vesicles in water also induced a lipid-specific increase in AA release. Mass spectrometric analysis demonstrated that C1P delivered via ethanol/dodecane induced a 3-fold increase in endogenous C1P with little metabolism to ceramide. C1P was also more efficiently delivered (>3-fold) to internal membranes by ethanol/dodecane as compared to vesiculated C1P. Using this now established delivery method for lipids, C(2)-C1P was shown to be ineffective in the induction of AA release as compared with C(6)-C1P, C(16)-C1P, and C(18:1) C1P. Here, we demonstrate that C1P requires >or=6 carbon acyl-chain to activate cPLA(2)alpha. Thus, published reports on the biological activity of C(2)-C1P are not via eicosanoid synthesis. Furthermore, this study demonstrates that the alcohol/dodecane system can be used to efficiently deliver exogenous phospholipids to cells for the examination of specific biological effects.


Asunto(s)
Ceramidas/farmacología , Fosfolipasas A2 Grupo IV/metabolismo , Alcanos/química , Línea Celular Tumoral , Ceramidas/química , Activación Enzimática/efectos de los fármacos , Humanos , Relación Estructura-Actividad
19.
J Lipid Res ; 48(6): 1293-304, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17392267

RESUMEN

Ceramide kinase (CERK) is a critical mediator of eicosanoid synthesis, and its product, ceramide-1-phosphate (C1P), is required for the production of prostaglandins in response to several inflammatory agonists. In this study, mass spectrometry analysis disclosed that the main forms of C1P in cells were C(16:0) C1P and C(18:0) C1P, suggesting that CERK uses ceramide transported to the trans-Golgi apparatus by ceramide transport protein (CERT). To this end, downregulation of CERT by RNA interference technology dramatically reduced the levels of newly synthesized C1P (kinase-derived) as well as significantly reduced the total mass levels of C1P in cells. Confocal microscopy, subcellular fractionation, and surface plasmon resonance analysis were used to further localize CERK to the trans-Golgi network, placing the generation of C1P in the proper intracellular location for the recruitment of cytosolic phospholipase A(2)alpha. In conclusion, these results demonstrate that CERK localizes to areas of eicosanoid synthesis and uses a ceramide "pool" transported in an active manner via CERT.


Asunto(s)
Ceramidas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Ceramidas/química , Ácidos Eicosanoicos/química , Ácidos Eicosanoicos/metabolismo , Eicosanoides/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Immunoblotting , Espectrometría de Masas , Microscopía Confocal , Modelos Biológicos , Orgánulos/metabolismo , Ácidos Palmíticos/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Interferencia de ARN , Ácidos Esteáricos/química , Ácidos Esteáricos/metabolismo
20.
J Biol Chem ; 279(12): 11320-6, 2004 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-14676210

RESUMEN

Recently, we demonstrated that ceramide kinase, and its product, ceramide 1-phosphate (Cer-1-P), were mediators of arachidonic acid released in cells in response to interleukin-1beta and calcium ionophore (Pettus, B. J., Bielawska, A., Spiegel, S., Roddy, P., Hannun, Y. A., and Chalfant, C. E. (2003) J. Biol. Chem. 278, 38206-38213). In this study, we demonstrate that down-regulation of cytosolic phospholipase A(2) (cPLA(2)) using RNA interference technology abolished the ability of Cer-1-P to induce arachidonic acid release in A549 cells, demonstrating that cPLA(2) is the key phospholipase A(2) downstream of Cer-1-P. Treatment of A549 cells with Cer-1-P (2.5 microm) induced the translocation of full-length cPLA(2) from the cytosol to the Golgi apparatus/perinuclear regions, which are known sites of translocation in response to agonists. Cer-1-P also induced the translocation of the CaLB/C2 domain of cPLA(2) in the same manner, suggesting that this domain is responsive to Cer-1-P either directly or indirectly. In vitro studies were then conducted to distinguish these two possibilities. In vitro binding studies disclosed that Cer-1-P interacts directly with full-length cPLA(2) and with the CaLB domain in a calcium- and lipid-specific manner with a K(Ca) of 1.54 microm. Furthermore, Cer-1-P induced a calcium-dependent increase in cPLA(2) enzymatic activity as well as lowering the EC(50) of calcium for the enzyme from 191 to 31 nm. This study identifies Cer-1-P as an anionic lipid that translocates and directly activates cPLA(2), demonstrating a role for this bioactive lipid in the mediation of inflammatory responses.


Asunto(s)
Ceramidas/farmacología , Citosol/enzimología , Activadores de Enzimas/farmacología , Fosfolipasas A/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Humanos , Fosfolipasas A2 , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA