Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int Immunopharmacol ; 87: 106822, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32738595

RESUMEN

C-Cbl-associated protein (CAP), also known as Sorbin and SH3 domain-containing protein 1 (Sorbs1) or ponsin, an adaptor protein of the insulin-signalling pathway, mediates anti-viral and anti-cytotoxic protection in acute viral heart disease. In the present study we describe a novel protective immuno-modulatory function of CAP in inflammation. Among the three members of the Sorbs family of adapter molecules, which include CAP (Sorbs1), ArgBP2 (Sorbs2), and Vinexin (Sorbs3), CAP consistently down-regulated the expression of pro-inflammatory cytokines in mouse fibroblasts, cardiomyocytes, and myeloid-derived leukocytes, after Toll-like receptor (TLR) stimulation. Upon the same TLR stimulation, ArgBP2 partially down-regulated pro-inflammatory cytokine production in mouse fibroblasts and cardiomyocytes, while Vinexin rather promoted their production. Mechanistically, CAP limited pro-inflammatory cytokine expression by suppressing the phosphorylation of Inhibitor of kappa B (IκB) kinase (Iκκ)-α and Iκκ-ß and their downstream NF-κB-dependent signalling pathway. Molecular affinity between CAP and Iκκ-α/ Iκκ-ß was necessary to block the NF-κB pathway. The CAP-dependent inhibitory mechanism - in vivo exclusively IL-6 inhibition - was confirmed after collecting blood from mice with systemic inflammation induced by lipopolysaccharide (LPS) and in the heart tissue collected from mice infected with the cardiotropic Coxsackievirus B3 (CVB3). Taken together, CAP down-regulates pro-inflammatory cytokines by interfering with the normal function of the NF-κB pathway. The promotion of CAP production could support the development of new strategies aiming to limit excessive and detrimental activation of the immune system.


Asunto(s)
Citocinas/inmunología , FN-kappa B/inmunología , Proteínas Proto-Oncogénicas c-cbl/inmunología , Animales , Línea Celular , Infecciones por Coxsackievirus/inmunología , Enterovirus Humano B , Fibroblastos , Humanos , Leucocitos , Ratones Noqueados , Miocitos Cardíacos , Proteínas Proto-Oncogénicas c-cbl/genética , Transducción de Señal
2.
J Clin Med ; 9(7)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709049

RESUMEN

OBJECTIVE: Positron emission tomography/computed tomography with 18F-fluorodeoxy-glucose (18F-FDG-PET/CT) has become the standard staging modality in various tumor entities. Cancer patients frequently receive cardio-toxic therapies. However, routine cardiovascular assessment in oncologic patients is not performed in current clinical practice. Accordingly, this study sought to assess whether myocardial 18F-FDG uptake patterns of patients undergoing oncologic PET/CT can be used for cardiovascular risk stratification. METHODS: Myocardial 18F-FDG uptake pattern was assessed in 302 patients undergoing both oncologic whole-body 18F-FDG-PET/CT and myocardial perfusion imaging by single-photon emission computed tomography (SPECT-MPI) within a six-month period. Primary outcomes were myocardial 18F-FDG uptake pattern, impaired myocardial perfusion, ongoing ischemia, myocardial scar, and left ventricular ejection fraction. RESULTS: Among all patients, 109 (36.1%) displayed no myocardial 18F-FDG uptake, 77 (25.5%) showed diffuse myocardial 18F-FDG uptake, 24 (7.9%) showed focal 18F-FDG uptake, and 92 (30.5%) had a focal on diffuse myocardial 18F-FDG uptake pattern. In contrast to the other uptake patterns, focal myocardial 18F-FDG uptake was predominantly observed in patients with myocardial abnormalities (i.e., abnormal perfusion, impaired LVEF, myocardial ischemia, or scar). Accordingly, a multivariate logistic regression identified focal myocardial 18F-FDG uptake as a strong predictor of abnormal myocardial function/perfusion (odds ratio (OR) 5.32, 95% confidence interval (CI) 1.73-16.34, p = 0.003). Similarly, focal myocardial 18F-FDG uptake was an independent predictor of ongoing ischemia and myocardial scar (OR 4.17, 95% CI 1.53-11.4, p = 0.005 and OR 3.78, 95% CI 1.47-9.69, p = 0.006, respectively). CONCLUSIONS: Focal myocardial 18F-FDG uptake seen on oncologic PET/CT indicates a significantly increased risk for multiple myocardial abnormalities. Obtaining and taking this information into account will help to stratify patients according to risk and will reduce unnecessary cardiovascular complications in cancer patients.

3.
Eur J Nucl Med Mol Imaging ; 47(13): 3094-3106, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32506162

RESUMEN

BACKGROUND: Recently, a new disease phenotype characterized by supra-normal left ventricular ejection fraction (snLVEF) has been suggested, based on large datasets demonstrating an increased all-cause mortality in individuals with an LVEF > 65%. The underlying mechanisms of this association are currently unknown. METHODS: A total of 1367 patients (352 women, mean age 63.1 ± 11.6 years) underwent clinically indicated rest/adenosine stress ECG-gated 13N-ammonia positron emission tomography (PET) between 1995 and 2017 at our institution. All patients were categorized according to LVEF. A subcohort of 698 patients (150 women) were followed for major adverse cardiac events (MACEs), a composite of cardiac death, non-fatal myocardial infarction, cardiac-related hospitalization, and revascularization. RESULTS: The prevalence of a snLVEF (≥ 65%) was higher in women as compared to that in men (31.3% vs 18.8%, p < 0.001). In women, a significant reduction in coronary flow reserve (CFR, p < 0.001 vs normal LVEF) and a blunted heart rate reserve (% HRR, p = 0.004 vs normal LVEF) during pharmacological stress testing-a surrogate marker for autonomic dysregulation-were associated with snLVEF. Accordingly, reduced CFR and HRR were identified as strong and independent predictors for snLVEF in women in a fully adjusted multinomial regression analysis. After a median follow-up time of 5.6 years, women with snLVEF experienced more often a MACE than women with normal (55-65%) LVEF (log rank p < 0.001), while such correlation was absent in men (log rank p = 0.76). CONCLUSION: snLVEF is associated with an increased risk of MACE in women, but not in men. Microvascular dysfunction and an increased sympathetic tone in women may account for this association.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Disfunción Ventricular Izquierda , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Volumen Sistólico , Tomografía Computarizada por Rayos X , Función Ventricular Izquierda
4.
Eur Heart J ; 40(12): 997-1008, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30629164

RESUMEN

AIMS: Metabolic cardiomyopathy (MC)-characterized by intra-myocardial triglyceride (TG) accumulation and lipotoxic damage-is an emerging cause of heart failure in obese patients. Yet, its mechanisms remain poorly understood. The Activator Protein 1 (AP-1) member JunD was recently identified as a key modulator of hepatic lipid metabolism in obese mice. The present study investigates the role of JunD in obesity-induced MC. METHODS AND RESULTS: JunD transcriptional activity was increased in hearts from diet-induced obese (DIO) mice and was associated with myocardial TG accumulation and left ventricular (LV) dysfunction. Obese mice lacking JunD were protected against MC. In DIO hearts, JunD directly binds PPARγ promoter thus enabling transcription of genes involved in TG synthesis, uptake, hydrolysis, and storage (i.e. Fas, Cd36, Lpl, Plin5). Cardiac-specific overexpression of JunD in lean mice led to PPARγ activation, cardiac steatosis, and dysfunction, thereby mimicking the MC phenotype. In DIO hearts as well as in neonatal rat ventricular myocytes exposed to palmitic acid, Ago2 immunoprecipitation, and luciferase assays revealed JunD as a direct target of miR-494-3p. Indeed, miR-494-3p was down-regulated in hearts from obese mice, while its overexpression prevented lipotoxic damage by suppressing JunD/PPARγ signalling. JunD and miR-494-3p were also dysregulated in myocardial specimens from obese patients as compared with non-obese controls, and correlated with myocardial TG content, expression of PPARγ-dependent genes, and echocardiographic indices of LV dysfunction. CONCLUSION: miR-494-3p/JunD is a novel molecular axis involved in obesity-related MC. These results pave the way for approaches to prevent or treat LV dysfunction in obese patients.


Asunto(s)
Cardiomiopatías/metabolismo , Miocardio/metabolismo , Obesidad/complicaciones , Proteínas Proto-Oncogénicas c-jun/metabolismo , Animales , Cardiomiopatías/complicaciones , Cardiomiopatías/fisiopatología , Estudios de Casos y Controles , Dieta Alta en Grasa , Regulación hacia Abajo , Insuficiencia Cardíaca/etiología , Humanos , Metabolismo de los Lípidos , Ratones , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , PPAR gamma/metabolismo , Ratas , Factor de Transcripción AP-1/metabolismo , Activación Transcripcional , Triglicéridos/metabolismo , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA