Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 283(49): 33883-8, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-18819915

RESUMEN

Misfolded proteins in the endoplasmic reticulum (ER) are exported to the cytosol for degradation by the proteasome in a process known as ER-associated degradation (ERAD). CPY* is a well characterized ERAD substrate whose degradation is dependent upon the Hrd1 complex. However, although the functions of some of the components of this complex are known, the nature of the protein dislocation channel remains obscure. Sec61p has been suggested as an obvious candidate because of its role as a protein-conducting channel through which polypeptides are initially translocated into the ER. However, it has not yet been possible to functionally dissect any role for Sec61p in dislocation from its essential function in translocation. By changing the translocation properties of a series of novel ERAD substrates, we are able to separate these two events and find that functional Sec61p is essential for the ERAD-L pathway.


Asunto(s)
Carboxipeptidasas/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Carboxipeptidasas/química , Membrana Celular/metabolismo , Genotipo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana , Modelos Genéticos , Mutación , Oligonucleótidos/química , Plásmidos/metabolismo , Unión Proteica , Transporte de Proteínas , Canales de Translocación SEC , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Translocación Genética
2.
J Biol Chem ; 283(2): 774-83, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-17998208

RESUMEN

Programmed cell death (PCD) is a genetically controlled cell death that is regulated during development and activated in response to environmental stresses or pathogen infection. The degree of conservation of PCD across kingdoms and phylum is not yet clear; however, whereas caspases are proteases that act as key components of animal apoptosis, plants have no orthologous caspase sequences in their genomes. The discovery of plant and fungi metacaspases as proteases most closely related to animal caspases led to the hypothesis that metacaspases are the functional homologues of animal caspases in these organisms. Arabidopsis thaliana has nine metacaspase genes, and so far it is unknown which members of the family if any are involved in the regulation of PCD. We show here that metacaspase-8 (AtMC8) is a member of the gene family strongly up-regulated by oxidative stresses caused by UVC, H(2)O(2), or methyl viologen. This up-regulation was dependent of RCD1, a mediator of the oxidative stress response. Recombinant metacaspase-8 cleaved after arginine, had a pH optimum of 8, and complemented the H(2)O(2) no-death phenotype of a yeast metacaspase knock-out. Overexpressing AtMC8 up-regulated PCD induced by UVC or H(2)O(2), and knocking out AtMC8 reduced cell death triggered by UVC and H(2)O(2) in protoplasts. Knock-out seeds and seedlings had an increased tolerance to the herbicide methyl viologen. We suggest that metacaspase-8 is part of an evolutionary conserved PCD pathway activated by oxidative stress.


Asunto(s)
Apoptosis/fisiología , Proteínas de Arabidopsis/genética , Caspasa 8/genética , Cisteína Endopeptidasas/genética , Peróxido de Hidrógeno/farmacología , Rayos Ultravioleta , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Arabidopsis , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/efectos de la radiación , Caspasa 8/efectos de los fármacos , Caspasa 8/efectos de la radiación , Muerte Celular , Cisteína Endopeptidasas/deficiencia , Cisteína Endopeptidasas/efectos de los fármacos , Cisteína Endopeptidasas/efectos de la radiación , Cartilla de ADN , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Estrés Oxidativo , Plantas Modificadas Genéticamente/metabolismo , Protoplastos/efectos de los fármacos , Protoplastos/fisiología , Protoplastos/efectos de la radiación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Biochem J ; 404(3): 403-11, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17331072

RESUMEN

The discovery that the flavoprotein oxidase, Erv2p, provides oxidizing potential for disulfide bond formation in yeast, has led to investigations into the roles of the mammalian homologues of this protein. Mammalian homologues of Erv2p include QSOX (sulfhydryl oxidases) from human lung fibroblasts, guinea-pig endometrial cells and rat seminal vesicles. In the present study we show that, when expressed in mammalian cells, the longer version of human QSOX1 protein (hQSOX1a) is a transmembrane protein localized primarily to the Golgi apparatus. We also present the first evidence showing that hQSOX1a can act in vivo as an oxidase. Overexpression of hQSOX1a suppresses the lethality of a complete deletion of ERO1 (endoplasmic reticulum oxidase 1) in yeast and restores disulfide bond formation, as assayed by the folding of the secretory protein carboxypeptidase Y.


Asunto(s)
Disulfuros/metabolismo , Tiorredoxinas/metabolismo , Animales , Antineoplásicos/metabolismo , Catepsina A/metabolismo , Línea Celular , Cricetinae , Ditiotreitol/metabolismo , Retículo Endoplásmico/metabolismo , Prueba de Complementación Genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilación , Aparato de Golgi/enzimología , Humanos , Nocodazol/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Proteína Disulfuro Isomerasas , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/metabolismo
4.
J Biol Chem ; 281(12): 7899-906, 2006 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-16368690

RESUMEN

Protein translocation into the endoplasmic reticulum occurs at pore-forming structures known as translocons. In yeast, two different targeting pathways converge at a translocation pore formed by the Sec61 complex. The signal recognition particle-dependent pathway targets nascent precursors co-translationally, whereas the Sec62p-dependent pathway targets polypeptides post-translationally. In addition to the Sec61 complex, both pathways also require Sec63p, an integral membrane protein of the Hsp40 family, and Kar2p, a soluble Hsp70 located in the ER lumen. Using a series of mutant alleles, we demonstrate that a conserved Brl (Brr2-like) domain in the COOH-terminal cytosolic region of Sec63p is essential for function both in vivo and in vitro. We further demonstrate that this domain is required for assembly of two oligomeric complexes of 350 and 380 kDa, respectively. The larger of these corresponds to the heptameric "SEC complex" required for post-translational translocation. However, the 350-kDa complex represents a newly defined hexameric SEC' complex comprising Sec61p, Sss1p, Sbh1p, Sec63p, Sec71p, and Sec72p. Our data indicate that the SEC' complex is required for co-translational protein translocation across the yeast ER membrane.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Transporte de Membrana/química , Proteínas Represoras/química , Proteínas de Saccharomyces cerevisiae/química , Alelos , Membrana Celular/metabolismo , Citosol/química , Citosol/metabolismo , ADN/química , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Inmunoprecipitación , Microsomas/metabolismo , Modelos Genéticos , Oligonucleótidos/química , Unión Proteica , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Helicasas , Saccharomyces cerevisiae/metabolismo , Partícula de Reconocimiento de Señal
5.
Biochemistry ; 42(23): 7171-7, 2003 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-12795613

RESUMEN

The signal recognition particle (SRP) is required for co-translational targeting of polypeptides to the endoplasmic reticulum (ER). Once at the membrane, the precursor interacts with a complex proteinaceous machinery that mediates its translocation across the bilayer. Genetic studies in yeast have identified a number of genes whose products are involved in this complex process. These mutants offer a potentially valuable resource with which to analyze the biochemical role played by each component in the pathway. However, such analyses have been hampered by the failure to reconstitute an efficient in vitro assay for SRP-dependent translocation. We report the construction of two multicopy vectors that allow overexpression of all seven gene products required to make SRP in the yeast Saccharomyces cerevisiae. The overexpressed subunits assemble into intact and functional SRP particles, and we further demonstrate that in vitro reconstitution of co-translational translocation is greatly enhanced using cytosol from the overexpression strain. We use this assay to demonstrate that Sec63p is required for co-translational translocation in vitro and specifically identify the "J-domain" of Sec63p as crucial for this pathway.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Secuencia de Bases , Transporte Biológico , Retículo Endoplásmico/metabolismo , Expresión Génica , Genes Fúngicos , Vectores Genéticos , Proteínas de Choque Térmico/química , Proteínas de Transporte de Membrana/química , Oligonucleótidos/genética , Plásmidos/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Eliminación de Secuencia/fisiología , Partícula de Reconocimiento de Señal/biosíntesis , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA