Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 78: 35-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450609

RESUMEN

Consumption of adenosine triphosphate (ATP) by the heart can change dramatically as the energetic demands increase from a period of rest to strenuous activity. Mitochondrial ATP production is central to this metabolic response since the heart relies largely on oxidative phosphorylation as its source of intracellular ATP. Significant evidence has been acquired indicating that Ca(2+) plays a critical role in regulating ATP production by the mitochondria. Here the evidence that the Ca(2+) concentration in the mitochondrial matrix ([Ca(2+)]m) plays a pivotal role in regulating ATP production by the mitochondria is critically reviewed and aspects of this process that are under current active investigation are highlighted. Importantly, current quantitative information on the bidirectional Ca(2+) movement across the inner mitochondrial membrane (IMM) is examined in two parts. First, we review how Ca(2+) influx into the mitochondrial matrix depends on the mitochondrial Ca(2+) channel (i.e., the mitochondrial calcium uniporter or MCU). This discussion includes how the MCU open probability (PO) depends on the cytosolic Ca(2+) concentration ([Ca(2+)]i) and on the mitochondrial membrane potential (ΔΨm). Second, we discuss how steady-state [Ca(2+)]m is determined by the dynamic balance between this MCU-based Ca(2+) influx and mitochondrial Na(+)/Ca(2+) exchanger (NCLX) based Ca(2+) efflux. These steady-state [Ca(2+)]m levels are suggested to regulate the metabolic energy supply due to Ca(2+)-dependent regulation of mitochondrial enzymes of the tricarboxylic acid cycle (TCA), the proteins of the electron transport chain (ETC), and the F1F0 ATP synthase itself. We conclude by discussing the roles played by [Ca(2+)]m in influencing mitochondrial responses under pathological conditions. This article is part of a Special Issue entitled "Mitochondria: From BasicMitochondrial Biology to Cardiovascular Disease."


Asunto(s)
Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Transporte Biológico , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Metabolismo Energético , Humanos , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Isquemia Miocárdica/metabolismo , NAD/biosíntesis
2.
Biophys J ; 107(6): 1289-301, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25229137

RESUMEN

Existing theory suggests that mitochondria act as significant, dynamic buffers of cytosolic calcium ([Ca(2+)]i) in heart. These buffers can remove up to one-third of the Ca(2+) that enters the cytosol during the [Ca(2+)]i transients that underlie contractions. However, few quantitative experiments have been presented to test this hypothesis. Here, we investigate the influence of Ca(2+) movement across the inner mitochondrial membrane during both subcellular and global cellular cytosolic Ca(2+) signals (i.e., Ca(2+) sparks and [Ca(2+)]i transients, respectively) in isolated rat cardiomyocytes. By rapidly turning off the mitochondria using depolarization of the inner mitochondrial membrane potential (ΔΨm), the role of the mitochondria in buffering cytosolic Ca(2+) signals was investigated. We show here that rapid loss of ΔΨm leads to no significant changes in cytosolic Ca(2+) signals. Second, we make direct measurements of mitochondrial [Ca(2+)] ([Ca(2+)]m) using a mitochondrially targeted Ca(2+) probe (MityCam) and these data suggest that [Ca(2+)]m is near the [Ca(2+)]i level (∼100 nM) under quiescent conditions. These two findings indicate that although the mitochondrial matrix is fully buffer-capable under quiescent conditions, it does not function as a significant dynamic buffer during physiological Ca(2+) signaling. Finally, quantitative analysis using a computational model of mitochondrial Ca(2+) cycling suggests that mitochondrial Ca(2+) uptake would need to be at least ∼100-fold greater than the current estimates of Ca(2+) influx for mitochondria to influence measurably cytosolic [Ca(2+)] signals under physiological conditions. Combined, these experiments and computational investigations show that mitochondrial Ca(2+) uptake does not significantly alter cytosolic Ca(2+) signals under normal conditions and indicates that mitochondria do not act as important dynamic buffers of [Ca(2+)]i under physiological conditions in heart.


Asunto(s)
Señalización del Calcio , Mitocondrias Cardíacas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Transporte Biológico , Citosol/metabolismo , Ventrículos Cardíacos/citología , Modelos Biológicos , Miocitos Cardíacos/citología , Ratas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA