Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
EMBO Rep ; 25(3): 1130-1155, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291337

RESUMEN

The correct establishment of DNA methylation patterns is vital for mammalian development and is achieved by the de novo DNA methyltransferases DNMT3A and DNMT3B. DNMT3B localises to H3K36me3 at actively transcribing gene bodies via its PWWP domain. It also functions at heterochromatin through an unknown recruitment mechanism. Here, we find that knockout of DNMT3B causes loss of methylation predominantly at H3K9me3-marked heterochromatin and that DNMT3B PWWP domain mutations or deletion result in striking increases of methylation in H3K9me3-marked heterochromatin. Removal of the N-terminal region of DNMT3B affects its ability to methylate H3K9me3-marked regions. This region of DNMT3B directly interacts with HP1α and facilitates the bridging of DNMT3B with H3K9me3-marked nucleosomes in vitro. Our results suggest that DNMT3B is recruited to H3K9me3-marked heterochromatin in a PWWP-independent manner that is facilitated by the protein's N-terminal region through an interaction with a key heterochromatin protein. More generally, we suggest that DNMT3B plays a role in DNA methylation homeostasis at heterochromatin, a process which is disrupted in cancer, aging and Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome.


Asunto(s)
Metilación de ADN , Cara/anomalías , Heterocromatina , Enfermedades de Inmunodeficiencia Primaria , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Mutación , Mamíferos/genética , Mamíferos/metabolismo
2.
Front Oncol ; 13: 1194515, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397358

RESUMEN

Introduction: The composition and remodelling of the extracellular matrix (ECM) are important factors in the development and progression of cancers, and the ECM is implicated in promoting tumour growth and restricting anti-tumour therapies through multiple mechanisms. The characterisation of differences in ECM composition between normal and diseased tissues may aid in identifying novel diagnostic markers, prognostic indicators and therapeutic targets for drug development. Methods: Using tissue from non-small cell lung cancer (NSCLC) patients undergoing curative intent surgery, we characterised quantitative tumour-specific ECM proteome signatures by mass spectrometry. Results: We identified 161 matrisome proteins differentially regulated between tumour tissue and nearby non-malignant lung tissue, and we defined a collagen hydroxylation functional protein network that is enriched in the lung tumour microenvironment. We validated two novel putative extracellular markers of NSCLC, the collagen cross-linking enzyme peroxidasin and a disintegrin and metalloproteinase with thrombospondin motifs 16 (ADAMTS16), for discrimination of malignant and non-malignant lung tissue. These proteins were up-regulated in lung tumour samples, and high PXDN and ADAMTS16 gene expression was associated with shorter survival of lung adenocarcinoma and squamous cell carcinoma patients, respectively. Discussion: These data chart extensive remodelling of the lung extracellular niche and reveal tumour matrisome signatures in human NSCLC.

3.
Nat Commun ; 14(1): 1602, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959177

RESUMEN

Interactions between cells and the extracellular matrix, mediated by integrin adhesion complexes, play key roles in fundamental cellular processes, including the sensing and transduction of mechanical cues. Here, we investigate systems-level changes in the integrin adhesome in patient-derived cutaneous squamous cell carcinoma cells and identify the actin regulatory protein Mena as a key node in the adhesion complex network. Mena is connected within a subnetwork of actin-binding proteins to the LINC complex component nesprin-2, with which it interacts and co-localises at the nuclear envelope. Moreover, Mena potentiates the interactions of nesprin-2 with the actin cytoskeleton and the nuclear lamina. CRISPR-mediated Mena depletion causes altered nuclear morphology, reduces tyrosine phosphorylation of the nuclear membrane protein emerin and downregulates expression of the immunomodulatory gene PTX3 via the recruitment of its enhancer to the nuclear periphery. We uncover an unexpected role for Mena at the nuclear membrane, where it controls nuclear architecture, chromatin repositioning and gene expression. Our findings identify an adhesion protein that regulates gene transcription via direct signalling across the nuclear envelope.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Actinas/genética , Actinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Núcleo Celular/metabolismo , Expresión Génica , Integrinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Membrana Nuclear/metabolismo , Lámina Nuclear/metabolismo , Neoplasias Cutáneas/metabolismo
4.
Mol Cell ; 82(23): 4537-4547.e7, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327975

RESUMEN

Inhibition of the electron transport chain (ETC) prevents the regeneration of mitochondrial NAD+, resulting in cessation of the oxidative tricarboxylic acid (TCA) cycle and a consequent dependence upon reductive carboxylation for aspartate synthesis. NAD+ regeneration alone in the cytosol can rescue the viability of ETC-deficient cells. Yet, how this occurs and whether transfer of oxidative equivalents to the mitochondrion is required remain unknown. Here, we show that inhibition of the ETC drives reversal of the mitochondrial aspartate transaminase (GOT2) as well as malate and succinate dehydrogenases (MDH2 and SDH) to transfer oxidative NAD+ equivalents into the mitochondrion. This supports the NAD+-dependent activity of the mitochondrial glutamate dehydrogenase (GDH) and thereby enables anaplerosis-the entry of glutamine-derived carbon into the TCA cycle and connected biosynthetic pathways. Thus, under impaired ETC function, the cytosolic redox state is communicated into the mitochondrion and acts as a rheostat to support GDH activity and cell viability.


Asunto(s)
Malato Deshidrogenasa , NAD , NAD/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Oxidación-Reducción , Ciclo del Ácido Cítrico/fisiología , Respiración
5.
Nat Commun ; 13(1): 4674, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945217

RESUMEN

The MYC oncogene is a potent driver of growth and proliferation but also sensitises cells to apoptosis, which limits its oncogenic potential. MYC induces several biosynthetic programmes and primary cells overexpressing MYC are highly sensitive to glutamine withdrawal suggesting that MYC-induced sensitisation to apoptosis may be due to imbalance of metabolic/energetic supply and demand. Here we show that MYC elevates global transcription and translation, even in the absence of glutamine, revealing metabolic demand without corresponding supply. Glutamine withdrawal from MRC-5 fibroblasts depletes key tricarboxylic acid (TCA) cycle metabolites and, in combination with MYC activation, leads to AMP accumulation and nucleotide catabolism indicative of energetic stress. Further analyses reveal that glutamine supports viability through TCA cycle energetics rather than asparagine biosynthesis and that TCA cycle inhibition confers tumour suppression on MYC-driven lymphoma in vivo. In summary, glutamine supports the viability of MYC-overexpressing cells through an energetic rather than a biosynthetic mechanism.


Asunto(s)
Apoptosis , Glutamina , Apoptosis/genética , Línea Celular Tumoral , Ciclo del Ácido Cítrico , Fibroblastos/metabolismo , Glutamina/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
6.
J Pers Med ; 11(8)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34442440

RESUMEN

Radiotherapy (RT) is an important treatment modality for the local control of breast cancer (BC). Unfortunately, not all patients that receive RT will obtain a therapeutic benefit, as cancer cells that either possess intrinsic radioresistance or develop resistance during treatment can reduce its efficacy. For RT treatment regimens to become personalised, there is a need to identify biomarkers that can predict and/or monitor a tumour's response to radiation. Here we describe a novel method to identify such biomarkers. Liquid chromatography-mass spectrometry (LC-MS) was used on conditioned media (CM) samples from a radiosensitive oestrogen receptor positive (ER+) BC cell line (MCF-7) to identify cancer-secreted biomarkers which reflected a response to radiation. A total of 33 radiation-induced secreted proteins that had higher (up to 12-fold) secretion levels at 24 h post-2 Gy radiation were identified. Secretomic results were combined with whole-transcriptome gene expression experiments, using both radiosensitive and radioresistant cells, to identify a signature related to intrinsic radiosensitivity. Gene expression analysis assessing the levels of the 33 proteins showed that 5 (YBX3, EIF4EBP2, DKK1, GNPNAT1 and TK1) had higher expression levels in the radiosensitive cells compared to their radioresistant derivatives; 3 of these proteins (DKK1, GNPNAT1 and TK1) underwent in-lab and initial clinical validation. Western blot analysis using CM samples from cell lines confirmed a significant increase in the release of each candidate biomarker from radiosensitive cells 24 h after treatment with a 2 Gy dose of radiation; no significant increase in secretion was observed in the radioresistant cells after radiation. Immunohistochemistry showed that higher intracellular protein levels of the biomarkers were associated with greater radiosensitivity. Intracellular levels were further assessed in pre-treatment biopsy tissues from patients diagnosed with ER+ BC that were subsequently treated with breast-conserving surgery and RT. High DKK1 and GNPNAT1 intracellular levels were associated with significantly increased recurrence-free survival times, indicating that these two candidate biomarkers have the potential to predict sensitivity to RT. We suggest that the methods highlighted in this study could be utilised for the identification of biomarkers that may have a potential clinical role in personalising and optimising RT dosing regimens, whilst limiting the administration of RT to patients who are unlikely to benefit.

7.
J Cell Biol ; 220(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33635313

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogenic and stress signals to control growth and metabolism. Activation of mTORC1 by amino acids and growth factors involves recruitment of the complex to the lysosomal membrane and is further supported by lysosome distribution to the cell periphery. Here, we show that translocation of lysosomes toward the cell periphery brings mTORC1 into proximity with focal adhesions (FAs). We demonstrate that FAs constitute discrete plasma membrane hubs mediating growth factor signaling and amino acid input into the cell. FAs, as well as the translocation of lysosome-bound mTORC1 to their vicinity, contribute to both peripheral and intracellular mTORC1 activity. Conversely, lysosomal distribution to the cell periphery is dispensable for the activation of mTORC1 constitutively targeted to FAs. This study advances our understanding of spatial mTORC1 regulation by demonstrating that the localization of mTORC1 to FAs is both necessary and sufficient for its activation by growth-promoting stimuli.


Asunto(s)
Adhesiones Focales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Aminoácidos/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Ratones , Transducción de Señal/fisiología
8.
Cell Stem Cell ; 28(5): 877-893.e9, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33631116

RESUMEN

Point mutations within the histone H3.3 are frequent in aggressive childhood brain tumors known as pediatric high-grade gliomas (pHGGs). Intriguingly, distinct mutations arise in discrete anatomical regions: H3.3-G34R within the forebrain and H3.3-K27M preferentially within the hindbrain. The reasons for this contrasting etiology are unknown. By engineering human fetal neural stem cell cultures from distinct brain regions, we demonstrate here that cell-intrinsic regional identity provides differential responsiveness to each mutant that mirrors the origins of pHGGs. Focusing on H3.3-G34R, we find that the oncohistone supports proliferation of forebrain cells while inducing a cytostatic response in the hindbrain. Mechanistically, H3.3-G34R does not impose widespread transcriptional or epigenetic changes but instead impairs recruitment of ZMYND11, a transcriptional repressor of highly expressed genes. We therefore propose that H3.3-G34R promotes tumorigenesis by focally stabilizing the expression of key progenitor genes, thereby locking initiating forebrain cells into their pre-existing immature state.


Asunto(s)
Neoplasias Encefálicas , Glioma , Células-Madre Neurales , Neoplasias Encefálicas/genética , Carcinogénesis/genética , Glioma/genética , Histonas/genética , Humanos , Mutación/genética
9.
Nat Commun ; 12(1): 694, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514701

RESUMEN

The aberrant gain of DNA methylation at CpG islands is frequently observed in colorectal tumours and may silence the expression of tumour suppressors such as MLH1. Current models propose that these CpG islands are targeted by de novo DNA methyltransferases in a sequence-specific manner, but this has not been tested. Using ectopically integrated CpG islands, here we find that aberrantly methylated CpG islands are subject to low levels of de novo DNA methylation activity in colorectal cancer cells. By delineating DNA methyltransferase targets, we find that instead de novo DNA methylation activity is targeted primarily to CpG islands marked by the histone modification H3K36me3, a mark associated with transcriptional elongation. These H3K36me3 marked CpG islands are heavily methylated in colorectal tumours and the normal colon suggesting that de novo DNA methyltransferase activity at CpG islands in colorectal cancer is focused on similar targets to normal tissues and not greatly remodelled by tumourigenesis.


Asunto(s)
Neoplasias Colorrectales/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Código de Histonas/genética , Carcinogénesis/genética , Línea Celular Tumoral , Secuenciación de Inmunoprecipitación de Cromatina , Colon/patología , Neoplasias Colorrectales/patología , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Conjuntos de Datos como Asunto , Epigénesis Genética , Técnicas de Inactivación de Genes , Histonas/genética , Humanos , Regiones Promotoras Genéticas/genética , Transcripción Genética
10.
Mol Cancer Res ; 19(2): 274-287, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33097627

RESUMEN

Elevated NF-κB activity is a contributory factor in many hematologic and solid malignancies. Nucleolar sequestration of NF-κB/RelA represses this elevated activity and mediates apoptosis of cancer cells. Here, we set out to understand the mechanisms that control the nuclear/nucleolar distribution of RelA and other regulatory proteins, so that agents can be developed that specifically target these proteins to the organelle. We demonstrate that RelA accumulates in intranucleolar aggresomes in response to specific stresses. We also demonstrate that the autophagy receptor, SQSTM1/p62, accumulates alongside RelA in these nucleolar aggresomes. This accumulation is not a consequence of inhibited autophagy. Indeed, our data suggest nucleolar and autophagosomal accumulation of p62 are in active competition. We identify a conserved motif at the N-terminus of p62 that is essential for nucleoplasmic-to-nucleolar transport of the protein. Furthermore, using a dominant-negative mutant deleted for this nucleolar localization signal (NoLS), we demonstrate a role for p62 in trafficking RelA and other aggresome-related proteins to nucleoli, to induce apoptosis. Together, these data identify a novel role for p62 in trafficking nuclear proteins to nucleolar aggresomes under conditions of cell stress, thus maintaining cellular homeostasis. They also provide invaluable information on the mechanisms that regulate the nuclear/nucleolar distribution of RelA that could be exploited for therapeutic purpose. IMPLICATIONS: The data open up avenues for the development of a unique class of therapeutic agents that act by targeting RelA and other aberrantly active proteins to nucleoli, thus killing cancer cells.


Asunto(s)
FN-kappa B/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Sequestosoma-1/metabolismo , Apoptosis , Autofagia , Células Cultivadas , Humanos , Transducción de Señal
11.
J Biol Chem ; 295(34): 12045-12057, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32616651

RESUMEN

Ambra1 is considered an autophagy and trafficking protein with roles in neurogenesis and cancer cell invasion. Here, we report that Ambra1 also localizes to the nucleus of cancer cells, where it has a novel nuclear scaffolding function that controls gene expression. Using biochemical fractionation and proteomics, we found that Ambra1 binds to multiple classes of proteins in the nucleus, including nuclear pore proteins, adaptor proteins such as FAK and Akap8, chromatin-modifying proteins, and transcriptional regulators like Brg1 and Atf2. We identified biologically important genes, such as Angpt1, Tgfb2, Tgfb3, Itga8, and Itgb7, whose transcription is regulated by Ambra1-scaffolded complexes, likely by altering histone modifications and Atf2 activity. Therefore, in addition to its recognized roles in autophagy and trafficking, Ambra1 scaffolds protein complexes at chromatin, regulating transcriptional signaling in the nucleus. This novel function for Ambra1, and the specific genes impacted, may help to explain the wider role of Ambra1 in cancer cell biology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica , Complejos Multiproteicos/metabolismo , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Transporte Activo de Núcleo Celular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Angiopoyetina 1/biosíntesis , Angiopoyetina 1/genética , Línea Celular , Cromatina/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Cadenas alfa de Integrinas/biosíntesis , Cadenas alfa de Integrinas/genética , Cadenas beta de Integrinas/biosíntesis , Cadenas beta de Integrinas/genética , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta2/biosíntesis , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta3/biosíntesis , Factor de Crecimiento Transformador beta3/genética
12.
Breast Cancer Res ; 21(1): 2, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616553

RESUMEN

BACKGROUND: The risk of recurrence for endocrine-treated breast cancer patients persists for many years or even decades following surgery and apparently successful adjuvant therapy. This period of dormancy and acquired resistance is inherently difficult to investigate; previous efforts have been limited to in-vitro or in-vivo approaches. In this study, sequential tumour samples from patients receiving extended neoadjuvant aromatase inhibitor therapy were characterised as a novel clinical model. METHODS: Consecutive tumour samples from 62 patients undergoing extended (4-45 months) neoadjuvant aromatase inhibitor therapy with letrozole were subjected to transcriptomic and proteomic analysis, representing before (≤ 0), early (13-120 days), and long-term (> 120 days) neoadjuvant aromatase inhibitor therapy with letrozole. Patients with at least a 40% initial reduction in tumour size by 4 months of treatment were included. Of these, 42 patients with no subsequent progression were classified as "dormant", and the remaining 20 patients as "acquired resistant". RESULTS: Changes in gene expression in dormant tumours begin early and become more pronounced at later time points. Therapy-induced changes in resistant tumours were common features of treatment, rather than being specific to the resistant phenotype. Comparative analysis of long-term treated dormant and resistant tumours highlighted changes in epigenetics pathways including DNA methylation and histone acetylation. The DNA methylation marks 5-methylcytosine and 5-hydroxymethylcytosine were significantly reduced in resistant tumours compared with dormant tissues after extended letrozole treatment. CONCLUSIONS: This is the first patient-matched gene expression study investigating long-term aromatase inhibitor-induced dormancy and acquired resistance in breast cancer. Dormant tumours continue to change during treatment whereas acquired resistant tumours more closely resemble their diagnostic samples. Global loss of DNA methylation was observed in resistant tumours under extended treatment. Epigenetic alterations may lead to escape from dormancy and drive acquired resistance in a subset of patients, supporting a potential role for therapy targeted at these epigenetic alterations in the management of resistance to oestrogen deprivation therapy.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/terapia , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Letrozol/farmacología , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Inhibidores de la Aromatasa/uso terapéutico , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Estudios de Cohortes , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Epigénesis Genética/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Humanos , Letrozol/uso terapéutico , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Recurrencia Local de Neoplasia , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos
13.
Oncotarget ; 8(26): 42857-42875, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28476026

RESUMEN

Hypoxic cancer cells exhibit resistance to many therapies. This study compared the therapeutic effect of targeting the pH regulatory proteins (CAIX, NHE1 and V-ATPase) that permit cancer cells to adapt to hypoxic conditions, using both 2D and 3D culture models. Drugs targeting CAIX, NHE1 and V-ATPase exhibited anti-proliferative effects in MCF-7, MDA-MB-231 and HBL-100 breast cancer cell lines in 2D. Protein and gene expression analysis in 2D showed that CAIX was the most hypoxia-inducible protein of the 3 targets. However, the expression of CAIX differed between the 3 cell lines. This difference in CAIX expression in hypoxia was consistent with a varying activity of FIH-1 between the cell lines. 3D expression analysis demonstrated that both CAIX and NHE1 were up-regulated in the hypoxic areas of multicellular tumor spheroids. However, the induction of CAIX expression in hypoxia was again cell line dependent. 3D invasion assays conducted with spheroids showed that CAIX inhibition significantly reduced the invasion of cells. Finally, the capability of both NHE1 and CAIX inhibitors to combine effectively with irradiation was exhibited in clonogenic assays. Proteomic-mass-spectrometric analysis indicated that CAIX inhibition might be combining with irradiation through stimulating apoptotic cell death. Of the three proteins, CAIX represents the target with the most promise for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Concentración de Iones de Hidrógeno , Hipoxia/metabolismo , Neoplasias de la Mama/genética , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Espectrometría de Masas , Oxígeno/metabolismo , Proteómica/métodos , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
14.
J Cell Biol ; 216(4): 999-1013, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28246120

RESUMEN

Cilia assembly and disassembly are coupled to actin dynamics, ensuring a coherent cellular response during environmental change. How these processes are integrated remains undefined. The histone lysine demethylase KDM3A plays important roles in organismal homeostasis. Loss-of-function mouse models of Kdm3a phenocopy features associated with human ciliopathies, whereas human somatic mutations correlate with poor cancer prognosis. We demonstrate that absence of KDM3A facilitates ciliogenesis, but these resulting cilia have an abnormally wide range of axonemal lengths, delaying disassembly and accumulating intraflagellar transport (IFT) proteins. KDM3A plays a dual role by regulating actin gene expression and binding to the actin cytoskeleton, creating a responsive "actin gate" that involves ARP2/3 activity and IFT. Promoting actin filament formation rescues KDM3A mutant ciliary defects. Conversely, the simultaneous depolymerization of actin networks and IFT overexpression mimics the abnormal ciliary traits of KDM3A mutants. KDM3A is thus a negative regulator of ciliogenesis required for the controlled recruitment of IFT proteins into cilia through the modulation of actin dynamics.


Asunto(s)
Actinas/metabolismo , Transporte Biológico/fisiología , Cilios/fisiología , Flagelos/fisiología , Histona Demetilasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Animales , Línea Celular , Cilios/metabolismo , Flagelos/metabolismo , Expresión Génica/fisiología , Humanos , Ratones , Morfogénesis/fisiología , Mutación/fisiología , Fenotipo
15.
J Exp Med ; 214(3): 719-735, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28202494

RESUMEN

Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1/Hoxa9-driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation.


Asunto(s)
Fumarato Hidratasa/fisiología , Células Madre Hematopoyéticas/fisiología , Animales , Femenino , Fumaratos/metabolismo , Hematopoyesis , Histonas/metabolismo , Leucemia Mieloide Aguda/etiología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/fisiología , Consumo de Oxígeno
16.
EMBO Mol Med ; 9(2): 181-197, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28003334

RESUMEN

Cancer genome sequencing projects have identified hundreds of genetic alterations, often at low frequencies, raising questions as to their functional relevance. One exemplar gene is HUWE1, which has been found to be mutated in numerous studies. However, due to the large size of this gene and a lack of functional analysis of identified mutations, their significance to carcinogenesis is unclear. To determine the importance of HUWE1, we chose to examine its function in colorectal cancer, where it is mutated in up to 15 per cent of tumours. Modelling of identified mutations showed that they inactivate the E3 ubiquitin ligase activity of HUWE1. Genetic deletion of Huwe1 rapidly accelerated tumourigenic in mice carrying loss of the intestinal tumour suppressor gene Apc, with a dramatic increase in tumour initiation. Mechanistically, this phenotype was driven by increased MYC and rapid DNA damage accumulation leading to loss of the second copy of Apc The increased levels of DNA damage sensitised Huwe1-deficient tumours to DNA-damaging agents and to deletion of the anti-apoptotic protein MCL1. Taken together, these data identify HUWE1 as a bona fide tumour suppressor gene in the intestinal epithelium and suggest a potential vulnerability of HUWE1-mutated tumours to DNA-damaging agents and inhibitors of anti-apoptotic proteins.


Asunto(s)
Carcinogénesis , Neoplasias Colorrectales/patología , Daño del ADN , Genes Supresores de Tumor , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Eliminación de Gen , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas/genética
17.
Cell Syst ; 2(1): 38-48, 2016 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-27136688

RESUMEN

Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches.


Asunto(s)
Citoesqueleto de Actina , Actinas , Línea Celular Tumoral , Movimiento Celular , Citoesqueleto , Humanos , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteína de Unión al GTP rac1 , Proteína de Unión al GTP rhoA
18.
BMC Bioinformatics ; 10: 179, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19523214

RESUMEN

BACKGROUND: Proteomic protein identification results need to be compared across laboratories and platforms, and thus a reliable method is needed to estimate false discovery rates. The target-decoy strategy is a platform-independent and thus a prime candidate for standardized reporting of data. In its current usage based on global population parameters, the method does not utilize individual peptide scores optimally. RESULTS: Here we show that proteomic analyses largely benefit from using separate treatment of peptides matching to proteins alone or in groups based on locally estimated false discovery rates. Our implementation reduces the number of false positives and simultaneously increases the number of proteins identified. Importantly, single peptide identifications achieve defined confidence and the sequence coverage of proteins is optimized. As a result, we improve the number of proteins identified in a human serum analysis by 58% without compromising identification confidence. CONCLUSION: We show that proteins can reliably be identified with a single peptide and the sequence coverage for multi-peptide proteins can be increased when using an improved estimation of false discovery rates.


Asunto(s)
Péptidos/análisis , Péptidos/clasificación , Proteómica/métodos , Bases de Datos de Proteínas , Reacciones Falso Positivas , Proteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA