Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Anat ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735860

RESUMEN

The specific biology of the male breast remains relatively unexplored in spite of the increasing global prevalence of male breast cancer. Delineation of the microenvironment of the male breast is restricted by the low availability of human samples and a lack of characterisation of appropriate animal models. Unlike the mouse, the male ovine gland persists postnatally. We suggest that the male ovine mammary gland constitutes a promising adjunctive model for the male breast. In this study, we evaluate the male ovine mammary gland microenvironment, comparing intact and neutered males. Assessment of the glandular histo-anatomy highlights the resemblance of the male gland to that of neonatal female sheep and confirms the presence of rudimentary terminal duct lobular units. Irrespective of neutered status, cell proliferation in epithelial and stromal compartments is similarly low in males, and cell proliferation in epithelial cells and in the intralobular stroma is significantly lower than in pubertal female sheep. Between 42% and 72% of the luminal mammary epithelial cells in the male gland express the androgen receptor and expression is significantly reduced by neutering. Luminal epithelial cells within the intact and neutered male gland also express oestrogen receptor alpha, but minimal progesterone receptor expression is observed. The distribution of leukocytes within the ducts and stroma is similar to the mammary gland of female sheep and females of other species. Both macrophages and T lymphocytes are intercalated in the epithelial bilayer and are more abundant in the intralobular stroma than the interlobular stroma, suggesting that they may have a protective immunological function within the vestigial glandular tissue of the male sheep. Mast cells are also observed within the stroma. These cells cluster near the glandular tissue and are frequently located adjacent to blood vessels. The abundance of mast cells is significantly higher in intact males compared to neutered males, suggesting that hormone signalling may impact mast cell recruitment. In this study, we demonstrate the utility of the male ovine mammary gland as a model for furthering our knowledge of postnatal male mammary biology.

2.
J Mammary Gland Biol Neoplasia ; 29(1): 10, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722417

RESUMEN

Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Factor de Transcripción STAT3 , Animales , Femenino , Bovinos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Células Epiteliales/metabolismo , Factor de Transcripción STAT3/metabolismo , Fosforilación , Embarazo , Parto/fisiología , Parto/metabolismo , Transducción de Señal
3.
Mutagenesis ; 39(2): 96-118, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38183622

RESUMEN

The N-nitrosamine, N-nitrosodimethylamine (NDMA), is an environmental mutagen and rodent carcinogen. Small levels of NDMA have been identified as an impurity in some commonly used drugs, resulting in several product recalls. In this study, NDMA was evaluated in an OECD TG-488 compliant Muta™Mouse gene mutation assay (28-day oral dosing across seven daily doses of 0.02-4 mg/kg/day) using an integrated design that assessed mutation at the transgenic lacZ locus in various tissues and at the endogenous Pig-a gene-locus, along with micronucleus frequencies in peripheral blood. Liver pathology was determined together with NDMA exposure in blood and liver. The additivity of mutation induction was assessed by including two acute single-dose treatment groups (i.e. 5 and 10 mg/kg dose on Day 1), which represented the same total dose as two of the repeat dose treatment groups. NDMA did not induce statistically significant increases in mean lacZ mutant frequency (MF) in bone marrow, spleen, bladder, or stomach, nor in peripheral blood (Pig-a mutation or micronucleus induction) when tested up to 4 mg/kg/day. There were dose-dependent increases in mean lacZ MF in the liver, lung, and kidney following 28-day repeat dosing or in the liver and kidney after a single dose (10 mg/kg). No observed genotoxic effect levels (NOGEL) were determined for the positive repeat dose-response relationships. Mutagenicity did not exhibit simple additivity in the liver since there was a reduction in MF following NDMA repeat dosing compared with acute dosing for the same total dose. Benchmark dose modelling was used to estimate point of departure doses for NDMA mutagenicity in Muta™Mouse and rank order target organ tissue sensitivity (liver > kidney or lung). The BMD50 value for liver was 0.32 mg/kg/day following repeat dosing (confidence interval 0.21-0.46 mg/kg/day). In addition, liver toxicity was observed at doses of ≥ 1.1 mg/kg/day NDMA and correlated with systemic and target organ exposure. The integration of these results and their implications for risk assessment are discussed.


Asunto(s)
Dimetilnitrosamina , Mutágenos , Dimetilnitrosamina/toxicidad , Mutación , Mutágenos/toxicidad , Daño del ADN , Mutagénesis
4.
EBioMedicine ; 99: 104945, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142637

RESUMEN

BACKGROUND: Lung damage in severe COVID-19 is highly heterogeneous however studies with dedicated spatial distinction of discrete temporal phases of diffuse alveolar damage (DAD) and alternate lung injury patterns are lacking. Existing studies have also not accounted for progressive airspace obliteration in cellularity estimates. We used an imaging mass cytometry (IMC) analysis with an airspace correction step to more accurately identify the cellular immune response that underpins the heterogeneity of severe COVID-19 lung disease. METHODS: Lung tissue was obtained at post-mortem from severe COVID-19 deaths. Pathologist-selected regions of interest (ROIs) were chosen by light microscopy representing the patho-evolutionary spectrum of DAD and alternate disease phenotypes were selected for comparison. Architecturally normal SARS-CoV-2-positive lung tissue and tissue from SARS-CoV-2-negative donors served as controls. ROIs were stained for 40 cellular protein markers and ablated using IMC before segmented cells were classified. Cell populations corrected by ROI airspace and their spatial relationships were compared across lung injury patterns. FINDINGS: Forty patients (32M:8F, age: 22-98), 345 ROIs and >900k single cells were analysed. DAD progression was marked by airspace obliteration and significant increases in mononuclear phagocytes (MnPs), T and B lymphocytes and significant decreases in alveolar epithelial and endothelial cells. Neutrophil populations proved stable overall although several interferon-responding subsets demonstrated expansion. Spatial analysis revealed immune cell interactions occur prior to microscopically appreciable tissue injury. INTERPRETATION: The immunopathogenesis of severe DAD in COVID-19 lung disease is characterised by sustained increases in MnPs and lymphocytes with key interactions occurring even prior to lung injury is established. FUNDING: UK Research and Innovation/Medical Research Council through the UK Coronavirus Immunology Consortium, Barbour Foundation, General Sir John Monash Foundation, Newcastle University, JGW Patterson Foundation, Wellcome Trust.


Asunto(s)
COVID-19 , Lesión Pulmonar , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , COVID-19/patología , Lesión Pulmonar/patología , Células Endoteliales , SARS-CoV-2 , Pulmón/patología
5.
Mutagenesis ; 39(2): 78-95, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38112628

RESUMEN

The robust control of genotoxic N-nitrosamine (NA) impurities is an important safety consideration for the pharmaceutical industry, especially considering recent drug product withdrawals. NAs belong to the 'cohort of concern' list of genotoxic impurities (ICH M7) because of the mutagenic and carcinogenic potency of this chemical class. In addition, regulatory concerns exist regarding the capacity of the Ames test to predict the carcinogenic potential of NAs because of historically discordant results. The reasons postulated to explain these discordant data generally point to aspects of Ames test study design. These include vehicle solvent choice, liver S9 species, bacterial strain, compound concentration, and use of pre-incubation versus plate incorporation methods. Many of these concerns have their roots in historical data generated prior to the harmonization of Ames test guidelines. Therefore, we investigated various Ames test assay parameters and used qualitative analysis and quantitative benchmark dose modelling to identify which combinations provided the most sensitive conditions in terms of mutagenic potency. Two alkyl-nitrosamines, N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) were studied. NDMA and NDEA mutagenicity was readily detected in the Ames test and key assay parameters were identified that contributed to assay sensitivity rankings. The pre-incubation method (30-min incubation), appropriate vehicle (water or methanol), and hamster-induced liver S9, alongside Salmonella typhimurium strains TA100 and TA1535 and Escherichia coli strain WP2uvrA(pKM101) provide the most sensitive combination of assay parameters in terms of NDMA and NDEA mutagenic potency in the Ames test. Using these parameters and further quantitative benchmark dose modelling, we show that N-nitrosomethylethylamine (NMEA) is positive in Ames test and therefore should no longer be considered a historically discordant NA. The results presented herein define a sensitive Ames test design that can be deployed for the assessment of NAs to support robust impurity qualifications.


Asunto(s)
Nitrosaminas , Humanos , Animales , Cricetinae , Nitrosaminas/toxicidad , Nitrosaminas/química , Mutágenos/toxicidad , Mutágenos/química , Dietilnitrosamina/toxicidad , Mutagénesis , Pruebas de Mutagenicidad/métodos , Carcinógenos/toxicidad
6.
Arch Toxicol ; 96(7): 2067-2085, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35445829

RESUMEN

Risk assessments are increasingly reliant on information from in vitro assays. The in vitro micronucleus test (MNvit) is a genotoxicity test that detects chromosomal abnormalities, including chromosome breakage (clastogenicity) and/or whole chromosome loss (aneugenicity). In this study, MNvit datasets for 292 chemicals, generated by the US EPA's ToxCast program, were evaluated using a decision tree-based pipeline for hazard identification. Chemicals were tested with 19 concentrations (n = 1) up to 200 µM, in the presence and absence of Aroclor 1254-induced rat liver S9. To identify clastogenic chemicals, %MN values at each concentration were compared to a distribution of batch-specific solvent controls; this was followed by cytotoxicity assessment and benchmark concentration (BMC) analyses. The approach classified 157 substances as positives, 25 as negatives, and 110 as inconclusive. Using the approach described in Bryce et al. (Environ Mol Mutagen 52:280-286, 2011), we identified 15 (5%) aneugens. IVIVE (in vitro to in vivo extrapolation) was employed to convert BMCs into administered equivalent doses (AEDs). Where possible, AEDs were compared to points of departure (PODs) for traditional genotoxicity endpoints; AEDs were generally lower than PODs based on in vivo endpoints. To facilitate interpretation of in vitro MN assay concentration-response data for risk assessment, exposure estimates were utilized to calculate bioactivity exposure ratio (BER) values. BERs for 50 clastogens and two aneugens had AEDs that approached exposure estimates (i.e., BER < 100); these chemicals might be considered priorities for additional testing. This work provides a framework for the use of high-throughput in vitro genotoxicity testing for priority setting and chemical risk assessment.


Asunto(s)
Aneugénicos , Mutágenos , Aneugénicos/toxicidad , Animales , Pruebas de Micronúcleos/métodos , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Ratas , Medición de Riesgo
7.
Microbiol Spectr ; 10(2): e0265921, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35348373

RESUMEN

The 380-to-393-amino-acid glycoprotein I (gI) encoded by herpes simplex virus 1 (HSV-1) is a critical mediator for viral cell-to-cell spread and syncytium formation. Here we report a previously unrecognized aberrant form of gI in HSV-1-infected cells. Production of this molecule is independent of cell type and viral strains. It had an unexpected gel migration size of approximately 23 kDa, was packaged into viral particles, and could be coimmunoprecipitated by antibodies to both N and C termini of gI. Deep sequencing failed to detect alternative RNA splicing, and the invitro transcribed full-length mRNA gave rise to the 23 kDa protein in transfected cells. Combined mass spectrometry and antibody probing analyses detected peptide information across different regions of gI, suggesting the possibility of a full-length gI but with abnormal migration behavior. In line with this notion, the HA insertion mutagenesis revealed a stable fold in the gI extracellular region aa.38-196 resistant to denaturing conditions, whereas small deletions within this region failed the antibodies to detect the fast, but not the slow-moving species of gI. It is also intriguing that the structure could be perturbed to some extent by a gBsyn mutation, leading to exposure or shielding of the gI epitopes. Thus, the HSV-1 gI apparently adopts a very stable fold in its natural form, rendering it an unusual biophysical property. Our findings provide novel insight into the biological properties of HSV gI and have important implications in understanding the viral spread and pathogenesis. IMPORTANCE The HSV-1 gI is required for viral cell-to-cell spread within the host, but its behavior during infection has remained poorly defined. Along with the classic 66 kDa product, here we report a previously unrecognized, approximately 23 kDa form of gI. Biochemical and genetics analyses revealed that this molecule represents the full-length form of gI but adopts a stable fold in its extracellular domain that is resistant to denatured conditions, thus contributing to the aberrant migration rate. Our results revealed a novel property of HSV-1 gI and have important implications in understanding viral pathogenesis.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Técnicas de Cultivo de Célula , Línea Celular , Glicoproteínas , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
8.
Commun Biol ; 4(1): 993, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417554

RESUMEN

The human breast and ovine mammary gland undergo striking levels of postnatal development, leading to formation of terminal duct lobular units (TDLUs). Here we interrogate aspects of sheep TDLU growth as a model of breast development and to increase understanding of ovine mammogenesis. The distributions of epithelial nuclear Ki67 positivity differ significantly between younger and older lambs. Ki67 expression is polarised to the leading edge of the developing TDLUs. Intraepithelial ductal macrophages exhibit periodicity and considerably increased density in lambs approaching puberty. Stromal macrophages are more abundant centrally than peripherally. Intraepithelial T lymphocytes are more numerous in older lambs. Stromal hotspots of Ki67 expression colocalize with immune cell aggregates that exhibit distinct organisation consistent with tertiary lymphoid structures. The lamb mammary gland thus exhibits a dynamic mucosal and stromal immune microenvironment and constitutes a valuable model system that provides new insights into postnatal breast development.


Asunto(s)
Inmunidad Mucosa/inmunología , Macrófagos/inmunología , Glándulas Mamarias Animales/inmunología , Oveja Doméstica/inmunología , Células del Estroma/inmunología , Animales , Femenino , Macrófagos/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Oveja Doméstica/crecimiento & desarrollo , Células del Estroma/metabolismo
9.
J Virol ; 93(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31092572

RESUMEN

Like all the herpesviruses, herpes simplex virus encodes machinery that enables it to move through cell junctions to avoid neutralizing antibodies. This cell-to-cell spread mechanism requires the viral fusion machinery (gD, gH/gL, and gB) and numerous accessory proteins. Of all of these, minor alterations to only four proteins (gB, gK, UL20, or UL24) will dysregulate the fusion machinery, allowing the formation of syncytia. In contrast, removal of individual accessory proteins will block cell-to-cell spread, forcing the virus to transmit in a cell-free manner. In the context of a Syn variant, removal of a required accessory protein will block cell fusion, again forcing cell-free spread. This has been investigated most thoroughly for gBsyn variants, which lose their syncytial phenotype in the absence of several accessory proteins, including gE, gI, UL16, and UL21, which are known to physically interact. Recently it was found that UL21 is not needed for gKsyn-, UL20syn-, or UL24syn-induced cell fusion, and hence it was of interest to ascertain whether gE, gI, and UL16 are required for Syn variants other than gBsyn. Null mutants of these were each combined with seven syncytial variants distributed among gK, UL20, and UL24. Surprisingly, very different patterns of accessory protein requirements were revealed. Indeed, for the three gKsyn variants tested, two different patterns were found. Also, three mutants were able to replicate without causing cytopathic effects. These findings show that mutations that produce Syn variants dysregulate the cell-to-cell-spread machinery in unique ways and provide clues for elucidating how this virus moves between cells.IMPORTANCE Approximately 2/3 of adults worldwide are latently infected with herpes simplex virus 1. Upon reactivation, the virus has the ability to evade neutralizing antibodies by moving through cell junctions, but the mechanism of direct cell-to-cell spread is poorly understood. The machinery that assembles between cells includes the viral fusion proteins and various accessory proteins that prevent cells from fusing. Alterations in four proteins will dysregulate the machinery, allowing neighboring cells to fuse to make syncytia, but this can be prevented by removing various individual accessory proteins to further disable the machinery. Previously, the accessory protein UL21 was found to be important for the activity of some syncytial variants but not others. In this study, we discovered that UL16, gE, and gI all act differently in how they control the fusion machinery. A better understanding of the mechanism of cell-to-cell spread may enable the development of drugs that block it.


Asunto(s)
Células Gigantes/virología , Herpesvirus Humano 1/crecimiento & desarrollo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Internalización del Virus , Interacciones Microbiota-Huesped , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas Reguladoras y Accesorias Virales/genética , Liberación del Virus
10.
Part Fibre Toxicol ; 16(1): 8, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760282

RESUMEN

BACKGROUND: It is well established that toxicological evaluation of engineered nanomaterials (NMs) is vital to ensure the health and safety of those exposed to them. Further, there is a distinct need for the development of advanced physiologically relevant in vitro techniques for NM hazard prediction due to the limited predictive power of current in vitro models and the unsustainability of conducting nano-safety evaluations in vivo. Thus, the purpose of this study was to develop alternative in vitro approaches to assess the potential of NMs to induce genotoxicity by secondary mechanisms. RESULTS: This was first undertaken by a conditioned media-based technique, whereby cell culture media was transferred from differentiated THP-1 (dTHP-1) macrophages treated with γ-Fe2O3 or Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs) to the bronchial cell line 16HBE14o-. Secondly construction and SPION treatment of a co-culture model comprising of 16HBE14o- cells and dTHP-1 macrophages. For both of these approaches no cytotoxicity was detected and chromosomal damage was evaluated by the in vitro micronucleus assay. Genotoxicity assessment was also performed using 16HBE14o- monocultures, which demonstrated only γ-Fe2O3 nanoparticles to be capable of inducing chromosomal damage. In contrast, immune cell conditioned media and dual cell co-culture SPION treatments showed both SPION types to be genotoxic to 16HBE14o- cells due to secondary genotoxicity promoted by SPION-immune cell interaction. CONCLUSIONS: The findings of the present study demonstrate that the approach of using single in vitro cell test systems precludes the ability to consider secondary genotoxic mechanisms. Consequently, the use of multi-cell type models is preferable as they better mimic the in vivo environment and thus offer the potential to enhance understanding and detection of a wider breadth of potential damage induced by NMs.


Asunto(s)
Daño del ADN , Compuestos Férricos/toxicidad , Nanopartículas de Magnetita/toxicidad , Pruebas de Mutagenicidad/métodos , Bronquios/efectos de los fármacos , Bronquios/inmunología , Bronquios/patología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Citocinas/biosíntesis , Endocitosis/efectos de los fármacos , Humanos , Técnicas In Vitro , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Células THP-1
11.
Virology ; 527: 64-76, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30465930

RESUMEN

Glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1) plays a key role in multiple events during infection including virus entry, cell-to-cell spread, and virus-induced syncytia formation. Here, we provide evidence that an arginine/lysine cluster located at the transmembrane-cytoplasm interface of gD critically contributes to viral spread and cell-cell fusion. Our studies began with the discovery that packaging of gD into virions is almost completely blocked in the absence of tegument protein UL16. We subsequently identified a novel, direct, and regulated interaction between UL16 and gD, but this was not important for syncytia formation. However, a mutational analysis of the membrane-proximal basic residues of gD revealed that they are needed for the gBsyn phenotype, salubrinal-induced fusion of HSV-infected cells, and cell-to-cell spread. Finally, we found that these same gD tail basic residues are not required for cell fusion induced by a gKsyn variant.


Asunto(s)
Células Gigantes/metabolismo , Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Células Gigantes/virología , Herpes Simple/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Células Vero , Proteínas del Envoltorio Viral/genética , Proteínas Virales/genética , Virión/metabolismo , Replicación Viral
12.
PLoS Pathog ; 14(5): e1007054, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29742155

RESUMEN

All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1), direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor), we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B), and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4) blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/fisiología , Animales , Línea Celular , Chlorocebus aethiops , Cinamatos/metabolismo , Células Gigantes/metabolismo , Células Gigantes/virología , Herpesvirus Humano 1/fisiología , Humanos , Uniones Intercelulares/metabolismo , Espectrometría de Masas/métodos , Receptores Virales/metabolismo , Tiourea/análogos & derivados , Tiourea/metabolismo , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Replicación Viral
13.
Arch Toxicol ; 92(2): 967-982, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29177888

RESUMEN

Genetic damage is a key event in tumorigenesis, and chemically induced genotoxic effects are a human health concern. Although genetic toxicity data have historically been interpreted using a qualitative screen-and-bin approach, there is increasing interest in quantitative analysis of genetic toxicity dose-response data. We demonstrate an emerging use of the benchmark dose (BMD)-approach for empirically ranking cross-tissue sensitivity. Using a model environmental carcinogen, we quantitatively examined responses for four genetic damage endpoints over an extended dose range, and conducted cross-tissue sensitivity rankings using BMD100 values and their 90% confidence intervals (CIs). MutaMouse specimens were orally exposed to 11 doses of benzo[a]pyrene. DNA adduct frequency and lacZ mutant frequency (MF) were measured in up to 8 tissues, and Pig-a MF and micronuclei (MN) were assessed in immature (RETs) and mature red blood cells (RBCs). The cross-tissue BMD pattern for lacZ MF is similar to that observed for DNA adducts, and is consistent with an oral route-of-exposure and differences in tissue-specific metabolism and proliferation. The lacZ MF BMDs were significantly correlated with the tissue-matched adduct BMDs, demonstrating a consistent adduct conversion rate across tissues. The BMD CIs, for both the Pig-a and the MN endpoints, overlapped for RETs and RBCs, suggesting comparable utility of both cell populations for protracted exposures. Examination of endpoint-specific response maxima illustrates the difficulty of comparing BMD values for a fixed benchmark response across endpoints. Overall, the BMD-approach permitted robust comparisons of responses across tissues/endpoints, which is valuable to our mechanistic understanding of how benzo[a]pyrene induces genetic damage.


Asunto(s)
Benzo(a)pireno/toxicidad , Aductos de ADN/análisis , Pruebas de Mutagenicidad , Animales , Carcinógenos Ambientales/toxicidad , Daño del ADN , Relación Dosis-Respuesta a Droga , Determinación de Punto Final , Eritrocitos/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Pruebas de Micronúcleos , Modelos Teóricos , Pruebas de Toxicidad
14.
Mutagenesis ; 31(3): 323-8, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26208916

RESUMEN

Assessment of genetic toxicity and/or carcinogenic activity is an essential element of chemical screening programs employed to protect human health. Dose-response and gene mutation data are frequently analysed by industry, academia and governmental agencies for regulatory evaluations and decision making. Over the years, a number of efforts at different institutions have led to the creation and curation of databases to house genetic toxicology data, largely, with the aim of providing public access to facilitate research and regulatory assessments. This article provides a brief introduction to a new genetic toxicology portal called Mutation Analysis Informatics Tools (MutAIT) (www.mutait.org) that provides easy access to two of the largest genetic toxicology databases, the Mammalian Gene Mutation Database (MGMD) and TransgenicDB. TransgenicDB is a comprehensive collection of transgenic rodent mutation data initially compiled and collated by Health Canada. The updated MGMD contains approximately 50 000 individual mutation spectral records from the published literature. The portal not only gives access to an enormous quantity of genetic toxicology data, but also provides statistical tools for dose-response analysis and calculation of benchmark dose. Two important R packages for dose-response analysis are provided as web-distributed applications with user-friendly graphical interfaces. The 'drsmooth' package performs dose-response shape analysis and determines various points of departure (PoD) metrics and the 'PROAST' package provides algorithms for dose-response modelling. The MutAIT statistical tools, which are currently being enhanced, provide users with an efficient and comprehensive platform to conduct quantitative dose-response analyses and determine PoD values that can then be used to calculate human exposure limits or margins of exposure.


Asunto(s)
Análisis Mutacional de ADN/métodos , Bases de Datos de Ácidos Nucleicos , Mutágenos/toxicidad , Mutación , Programas Informáticos , Toxicología/métodos , Animales , Carcinógenos/toxicidad , Biología Computacional/métodos , ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Genética , Humanos , Masculino , Ratones , Modelos Genéticos , Primates/genética , Ratas
15.
J Virol ; 88(1): 110-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24131716

RESUMEN

UL16 is a tegument protein of herpes simplex virus (HSV) that is conserved among all members of the Herpesviridae, but its function is poorly understood. Previous studies revealed that UL16 is associated with capsids in the cytoplasm and interacts with the membrane protein UL11, which suggested a "bridging" function during cytoplasmic envelopment, but this conjecture has not been tested. To gain further insight, cells infected with UL16-null mutants were examined by electron microscopy. No defects in the transport of capsids to cytoplasmic membranes were observed, but the wrapping of capsids with membranes was delayed. Moreover, clusters of cytoplasmic capsids were often observed, but only near membranes, where they were wrapped to produce multiple capsids within a single envelope. Normal virion production was restored when UL16 was expressed either by complementing cells or from a novel position in the HSV genome. When the composition of the UL16-null viruses was analyzed, a reduction in the packaging of glycoprotein E (gE) was observed, which was not surprising, since it has been reported that UL16 interacts with this glycoprotein. However, levels of the tegument protein VP22 were also dramatically reduced in virions, even though this gE-binding protein has been shown not to depend on its membrane partner for packaging. Cotransfection experiments revealed that UL16 and VP22 can interact in the absence of other viral proteins. These results extend the UL16 interaction network beyond its previously identified binding partners to include VP22 and provide evidence that UL16 plays an important function at the membrane during virion production.


Asunto(s)
Simplexvirus/fisiología , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/metabolismo , Animales , Línea Celular , Prueba de Complementación Genética , Humanos , Unión Proteica , Células Vero
16.
Proc Natl Acad Sci U S A ; 109(48): 19798-803, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23150560

RESUMEN

Glycoprotein E (gE) of HSV plays a key role in cell-to-cell spread and virus-induced cell fusion. Here, we report that this function of gE requires the cooperation of tegument proteins UL11, UL16, and UL21. We found that the four proteins come together with very high efficiency to form a complex in transfected cells and in a manner that is regulated and coordinated. In particular, the inefficient interaction of UL16 with each membrane protein (UL11 and gE) observed in pairwise transfections became efficient when other binding partners were present. The significance of these interactions was revealed in studies of viral mutants, which showed that each of these tegument proteins is critical for processing, transport, and biological activity of gE. These findings provide insights into the mechanisms of how gE executes its function and also have implications in understanding HSV assembly and budding.


Asunto(s)
Citoplasma/fisiología , Simplexvirus/fisiología , Proteínas del Envoltorio Viral/fisiología , Proteínas Virales/fisiología , Animales , Fusión Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Mutación , Células Vero , Proteínas Virales/genética
17.
J Virol ; 86(21): 11886-98, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915809

RESUMEN

It is well known that proteins in the tegument (located between the viral capsid and envelope proteins) play critical roles in the assembly and budding of herpesviruses. Tegument proteins UL16 and UL11 of herpes simplex virus (HSV) are conserved among all the Herpesviridae. Although these proteins directly interact in vitro, UL16 was found to colocalize poorly with UL11 in cotransfected cells. To explain this discrepancy, we hypothesized that UL16 is initially made in an inactive form and is artificially transformed to the binding-competent state when cells are disrupted. Consistent with a regulated interaction, UL16 was able to fully colocalize with UL11 when a large C-terminal segment of UL16 was removed, creating mutant UL16(1-155). Moreover, membrane flotation assays revealed a massive movement of this mutant to the top of sucrose gradients in the presence of UL11, whereas both the full-length UL16 and the C-terminal fragment (residues 156 to 373) remained at the bottom. Further evidence for the presence of a C-terminal regulatory domain was provided by single-amino-acid substitutions at conserved cysteines (C269S, C271S, and C357S), which enabled the efficient interaction of full-length UL16 with UL11. Lastly, the binding site for UL11 was further mapped to residues 81 to 155, and to our surprise, the 5 Cys residues within UL16(1-155) are not required, even though the modification of free cysteines in UL16 with N-ethylmaleimide does in fact prevent binding. Collectively, these results reveal a regulatory function within the C-terminal region of UL16 that controls an N-terminal UL11-binding activity.


Asunto(s)
Mapeo de Interacción de Proteínas , Simplexvirus/fisiología , Proteínas Estructurales Virales/metabolismo , Ensamble de Virus , Sustitución de Aminoácidos , Animales , Sitios de Unión , Chlorocebus aethiops , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Eliminación de Secuencia , Células Vero , Proteínas Estructurales Virales/genética
18.
J Virol ; 85(18): 9437-46, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21734040

RESUMEN

The UL11 tegument protein of herpes simplex virus plays a critical role in the secondary envelopment; however, the mechanistic details remain elusive. Here, we report a new function of UL11 in the budding process in which it directs efficient acquisition of glycoprotein E (gE) via a direct interaction. In vitro binding assays showed that the interaction required only the first 28, membrane-proximal residues of the cytoplasmic tail of gE, and the C-terminal 26 residues of UL11. A second, weaker binding site was also found in the N-terminal half of UL11. The significance of the gE-UL11 interaction was subsequently investigated with viral deletion mutants. In the absence of the gE tail, virion packaging of UL11, but not other tegument proteins such as VP22 and VP16, was reduced by at least 80%. Reciprocally, wild-type gE packaging was also drastically reduced by about 87% in the absence of UL11, and this defect could be rescued in trans by expressing U(L)11 at the U(L)35 locus. Surprisingly, a mutant that lacks the C-terminal gE-binding site of UL11 packaged nearly normal amounts of gE despite its strong interaction with the gE tail in vitro, indicating that the interaction with the UL11 N terminus may be important. Mutagenesis studies of the UL11 N terminus revealed that the association of UL11 with membrane was not required for this function. In contrast, the UL11 acidic cluster motif was found to be critical for gE packaging and was not replaceable with foreign acidic clusters. Together, these results highlight an important role of UL11 in the acquisition of glycoprotein-enriched lipid bilayers, and the findings may also have important implications for the role of UL11 in gE-mediated cell-to-cell spread.


Asunto(s)
Herpesvirus Humano 1/fisiología , Mapeo de Interacción de Proteínas , Proteínas del Envoltorio Viral/metabolismo , Proteínas Estructurales Virales/metabolismo , Ensamble de Virus , Animales , Chlorocebus aethiops , Eliminación de Gen , Unión Proteica , Células Vero , Proteínas del Envoltorio Viral/genética , Proteínas Estructurales Virales/genética
19.
BMC Cancer ; 10: 640, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21092279

RESUMEN

BACKGROUND: Survival time for lung cancer is poor with over 90% of patients dying within five years of diagnosis primarily due to detection at late stage. The main objective of this study was to evaluate Fourier transform infrared spectroscopy (FTIR) as a high throughput and cost effective method for identifying biochemical changes in sputum as biomarkers for detection of lung cancer. METHODS: Sputum was collected from 25 lung cancer patients in the Medlung observational study and 25 healthy controls. FTIR spectra were generated from sputum cell pellets using infrared wavenumbers within the 1800 to 950 cm-1 "fingerprint" region. RESULTS: A panel of 92 infrared wavenumbers had absorbances significantly different between cancer and normal sputum spectra and were associated with putative changes in protein, nucleic acid and glycogen levels in tumours. Five prominent significant wavenumbers at 964 cm-1, 1024 cm-1, 1411 cm-1, 1577 cm-1 and 1656 cm-1 separated cancer spectra from normal spectra into two distinct groups using multivariate analysis (group 1: 100% cancer cases; group 2: 92% normal cases). Principal components analysis revealed that these wavenumbers were also able to distinguish lung cancer patients who had previously been diagnosed with breast cancer. No patterns of spectra groupings were associated with inflammation or other diseases of the airways. CONCLUSIONS: Our results suggest that FTIR applied to sputum might have high sensitivity and specificity in diagnosing lung cancer with potential as a non-invasive, cost-effective and high-throughput method for screening. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00899262.


Asunto(s)
Biomarcadores de Tumor/análisis , Ensayos Analíticos de Alto Rendimiento , Neoplasias Pulmonares/diagnóstico , Tamizaje Masivo/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Esputo/química , Anciano , Estudios de Casos y Controles , Ensayos Clínicos como Asunto , Femenino , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Análisis de Componente Principal , Sensibilidad y Especificidad , Gales
20.
J Virol ; 84(6): 2963-71, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20042500

RESUMEN

The UL16 protein of herpes simplex virus is capsid associated and was previously identified as a binding partner of the membrane-associated UL11 tegument protein (J. S. Loomis, R. J. Courtney, and J. W. Wills, J. Virol. 77:11417-11424, 2003). In those studies, a less-prominent, approximately 65-kDa binding partner of unknown identity was also observed. Mass spectrometry studies have now revealed this species to be UL21, a tegument protein that has been implicated in the transport of capsids in the cytoplasm. The validity of the mass spectrometry results was tested in a variety of coimmunoprecipitation and glutathione S-transferase pull-down experiments. The data revealed that UL21 and UL16 can form a complex in the absence of other viral proteins, even when the assays used proteins purified from Escherichia coli. Moreover, UL11 was able to pull down UL21 only when UL16 was present, suggesting that all three proteins can form a complex. Deletion analyses revealed that the second half of UL21 (residues 268 to 535) is sufficient for the UL16 interaction and packaging into virions; however, attempts to map a subdomain of UL16 were largely unsuccessful, with only the first 40 (of 373) residues being found to be dispensable. Nevertheless, it is clear that UL16 must have two distinct binding sites, because covalent modification of its free cysteines with N-ethylmaleimide blocked binding to UL11 but not UL21. These findings should prove useful for elucidating the molecular machinery used to transmit a signal into a virion when it attaches to cells, a recently discovered mechanism in which UL16 is a central player.


Asunto(s)
Simplexvirus/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/metabolismo , Animales , Cápside/metabolismo , Chlorocebus aethiops , Humanos , Espectrometría de Masas , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Células Vero , Proteínas Virales/genética , Proteínas Estructurales Virales/genética , Virión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA