Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nat Struct Mol Biol ; 30(1): 107-114, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36536104

RESUMEN

The double-strand break (DSB) repair pathway called microhomology-mediated end-joining (MMEJ) is thought to be dependent on DNA polymerase theta (Polθ) and occur independently of nonhomologous end-joining (NHEJ) factors. An unresolved question is whether MMEJ is facilitated by a single Polθ-mediated end-joining pathway or consists of additional undiscovered pathways. We find that human X-family Polλ, which functions in NHEJ, additionally exhibits robust MMEJ activity like Polθ. Polλ promotes MMEJ in mammalian cells independently of essential NHEJ factors LIG4/XRCC4 and Polθ, which reveals a distinct Polλ-dependent MMEJ mechanism. X-ray crystallography employing in situ photo-induced DSB formation captured Polλ in the act of stabilizing a microhomology-mediated DNA synapse with incoming nucleotide at 2.0 Å resolution and reveals how Polλ performs replication across a DNA synapse joined by minimal base-pairing. Last, we find that Polλ is semisynthetic lethal with BRCA1 and BRCA2. Together, these studies indicate Polλ MMEJ as a distinct DSB repair mechanism.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Animales , Humanos , Reparación del ADN por Unión de Extremidades , ADN , Mamíferos
2.
Nat Genet ; 53(9): 1348-1359, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34493867

RESUMEN

Lung cancer in never smokers (LCINS) is a common cause of cancer mortality but its genomic landscape is poorly characterized. Here high-coverage whole-genome sequencing of 232 LCINS showed 3 subtypes defined by copy number aberrations. The dominant subtype (piano), which is rare in lung cancer in smokers, features somatic UBA1 mutations, germline AR variants and stem cell-like properties, including low mutational burden, high intratumor heterogeneity, long telomeres, frequent KRAS mutations and slow growth, as suggested by the occurrence of cancer drivers' progenitor cells many years before tumor diagnosis. The other subtypes are characterized by specific amplifications and EGFR mutations (mezzo-forte) and whole-genome doubling (forte). No strong tobacco smoking signatures were detected, even in cases with exposure to secondhand tobacco smoke. Genes within the receptor tyrosine kinase-Ras pathway had distinct impacts on survival; five genomic alterations independently doubled mortality. These findings create avenues for personalized treatment in LCINS.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , No Fumadores/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Receptores ErbB/genética , Femenino , Genoma/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores Androgénicos/genética , Factores de Riesgo , Fumar/genética , Enzimas Activadoras de Ubiquitina/genética , Secuenciación Completa del Genoma , Adulto Joven
3.
Nat Commun ; 12(1): 5055, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417448

RESUMEN

Reactive oxygen species (ROS) oxidize cellular nucleotide pools and cause double strand breaks (DSBs). Non-homologous end-joining (NHEJ) attaches broken chromosomal ends together in mammalian cells. Ribonucleotide insertion by DNA polymerase (pol) µ prepares breaks for end-joining and this is required for successful NHEJ in vivo. We previously showed that pol µ lacks discrimination against oxidized dGTP (8-oxo-dGTP), that can lead to mutagenesis, cancer, aging and human disease. Here we reveal the structural basis for proficient oxidized ribonucleotide (8-oxo-rGTP) incorporation during DSB repair by pol µ. Time-lapse crystallography snapshots of structural intermediates during nucleotide insertion along with computational simulations reveal substrate, metal and side chain dynamics, that allow oxidized ribonucleotides to escape polymerase discrimination checkpoints. Abundant nucleotide pools, combined with inefficient sanitization and repair, implicate pol µ mediated oxidized ribonucleotide insertion as an emerging source of widespread persistent mutagenesis and genomic instability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Ribonucleótidos/metabolismo , Adenina/metabolismo , Calcio/metabolismo , Dominio Catalítico , Citosina/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Cinética , Manganeso/metabolismo , Modelos Moleculares , Oxidación-Reducción
4.
DNA Repair (Amst) ; 105: 103134, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34116475

RESUMEN

Maintaining genome stability involves coordination between different subcellular compartments providing cells with DNA repair systems that safeguard against environmental and endogenous stresses. Organisms produce the chemically reactive molecule formaldehyde as a component of one-carbon metabolism, and cells maintain systems to regulate endogenous levels of formaldehyde under physiological conditions, preventing genotoxicity, among other adverse effects. Dysregulation of formaldehyde is associated with several diseases, including cancer and neurodegenerative disorders. In the present review, we discuss the complex topic of endogenous formaldehyde metabolism and summarize advances in research on fo dysregulation, along with future research perspectives.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Mitocondrial/metabolismo , Formaldehído/metabolismo , Mitocondrias/metabolismo , Animales , Formaldehído/toxicidad , Humanos , Mitocondrias/genética , Mutágenos/metabolismo , Mutágenos/toxicidad
5.
Nat Commun ; 12(1): 2059, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824325

RESUMEN

Oxidized dGTP (8-oxo-7,8-dihydro-2´-deoxyguanosine triphosphate, 8-oxodGTP) insertion by DNA polymerases strongly promotes cancer and human disease. How DNA polymerases discriminate against oxidized and undamaged nucleotides, especially in error-prone double strand break (DSB) repair, is poorly understood. High-resolution time-lapse X-ray crystallography snapshots of DSB repair polymerase µ undergoing DNA synthesis reveal that a third active site metal promotes insertion of oxidized and undamaged dGTP in the canonical anti-conformation opposite template cytosine. The product metal bridged O8 with product oxygens, and was not observed in the syn-conformation opposite template adenine (At). Rotation of At into the syn-conformation enabled undamaged dGTP misinsertion. Exploiting metal and substrate dynamics in a rigid active site allows 8-oxodGTP to circumvent polymerase fidelity safeguards to promote pro-mutagenic double strand break repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Mutagénesis/genética , Nucleótidos/metabolismo , Adenina/metabolismo , Emparejamiento Base , Biocatálisis , Dominio Catalítico , Citosina/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Insercional/genética , Oxidación-Reducción
6.
Curr Protoc Toxicol ; 86(1): e99, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33202115

RESUMEN

Several cell lines of different origin are routinely used in research and drug development as important models to study human health and disease. Studying cells in culture represents an easy and convenient tool to approach complex biological questions, but the disadvantage is that they may not necessarily reflect what is effectively occurring in vivo. Human primary cells can help address this limitation, as they are isolated directly from human biological samples and can preserve the morphological and functional features of their tissue of origin. In addition, these can offer more relevant data and better solutions to investigators because they are not genetically manipulated. Human foreskin tissue discarded after surgery, for instance, represents a precious source for isolating such cells, including human foreskin fibroblasts (FSK), which are used in several areas of research and medicine. The overall health of cells is determined by the mitochondria. Alterations of cellular metabolism and cell death pathways depend, in part, on the number, size, distribution, and structure of mitochondria, and these can change under different cellular and pathological conditions. This highlights the need to develop accurate approaches to study mitochondria and evaluate their function. Here, we describe three easy, step-by-step protocols to study cellular viability and mitochondrial functionality in FSK. We describe how to use circumcision tissue obtained from the clinic to isolate FSK cells by mechanical and enzymatic disaggregation, how to use a cationic dye, crystal violet, which is retained by proliferating cells, to determine cell viability, and how to prepare samples to assess the metabolic status of cells by evaluating different mitochondrial parameters with transmission electron microscopy. We have successfully used the approaches outlined here to recapitulate physiological conditions in these cells in order to study the effects of increased intracellular levels of formaldehyde. © 2020 U.S. Government. Basic Protocol 1: Isolation and maintenance of human primary foreskin fibroblasts (FSK) Basic Protocol 2: Determination of cell viability by crystal violet staining Basic Protocol 3: Transmission electron microscopy to study cellular damage and mitochondrial dysfunction.


Asunto(s)
Fibroblastos/patología , Mitocondrias/patología , Supervivencia Celular , Células Cultivadas , Prepucio/citología , Humanos , Masculino , Cultivo Primario de Células
7.
Proc Natl Acad Sci U S A ; 117(25): 14412-14420, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513688

RESUMEN

Nucleotide excision repair (NER) removes helix-destabilizing adducts including ultraviolet (UV) lesions, cyclobutane pyrimidine dimers (CPDs), and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). In comparison with CPDs, 6-4PPs have greater cytotoxicity and more strongly destabilizing properties of the DNA helix. It is generally believed that NER is the only DNA repair pathway that removes the UV lesions as evidenced by the previous data since no repair of UV lesions was detected in NER-deficient skin fibroblasts. Topoisomerase I (TOP1) constantly creates transient single-strand breaks (SSBs) releasing the torsional stress in genomic duplex DNA. Stalled TOP1-SSB complexes can form near DNA lesions including abasic sites and ribonucleotides embedded in chromosomal DNA. Here we show that base excision repair (BER) increases cellular tolerance to UV independently of NER in cancer cells. UV lesions irreversibly trap stable TOP1-SSB complexes near the UV damage in NER-deficient cells, and the resulting SSBs activate BER. Biochemical experiments show that 6-4PPs efficiently induce stable TOP1-SSB complexes, and the long-patch repair synthesis of BER removes 6-4PPs downstream of the SSB. Furthermore, NER-deficient cancer cell lines remove 6-4PPs within 24 h, but not CPDs, and the removal correlates with TOP1 expression. NER-deficient skin fibroblasts weakly express TOP1 and show no detectable repair of 6-4PPs. Remarkably, the ectopic expression of TOP1 in these fibroblasts led them to completely repair 6-4PPs within 24 h. In conclusion, we reveal a DNA repair pathway initiated by TOP1, which significantly contributes to cellular tolerance to UV-induced lesions particularly in malignant cancer cells overexpressing TOP1.


Asunto(s)
Roturas del ADN de Cadena Simple/efectos de la radiación , Reparación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Rayos Ultravioleta/efectos adversos , Sistemas CRISPR-Cas/genética , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Fibroblastos , Técnicas de Inactivación de Genes , Humanos , Células MCF-7 , Cultivo Primario de Células , Piel/citología , Piel/patología , Piel/efectos de la radiación , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Xerodermia Pigmentosa/etiología , Xerodermia Pigmentosa/patología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
8.
Sci Rep ; 10(1): 5575, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221313

RESUMEN

Formaldehyde (FA) is a simple biological aldehyde that is produced inside cells by several processes such as demethylation of DNA and proteins, amino acid metabolism, lipid peroxidation and one carbon metabolism (1-C). Although accumulation of excess FA in cells is known to be cytotoxic, it is unknown if an increase in FA level might be associated with mitochondrial dysfunction. We choose to use primary human fibroblasts cells in culture (foreskin, FSK) as a physiological model to gain insight into whether an increase in the level of FA might affect cellular physiology, especially with regard to the mitochondrial compartment. FSK cells were exposed to increasing concentrations of FA, and different cellular parameters were studied. Elevation in intracellular FA level was achieved and was found to be cytotoxic by virtue of both apoptosis and necrosis and was accompanied by both G2/M arrest and reduction in the time spent in S phase. A gene expression assessment by microarray analysis revealed FA affected FSK cells by altering expression of many genes including genes involved in mitochondrial function and electron transport. We were surprised to observe increased DNA double-strand breaks (DSBs) in mitochondria after exposure to FA, as revealed by accumulation of γH2A.X and 53BP1 at mitochondrial DNA foci. This was associated with mitochondrial structural rearrangements, loss of mitochondrial membrane potential and activation of mitophagy. Collectively, these results indicate that an increase in the cellular level of FA can trigger mitochondrial DNA double-strand breaks and dysfunction.


Asunto(s)
Daño del ADN/genética , Fibroblastos/metabolismo , Formaldehído/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Apoptosis/genética , Ciclo Celular/genética , Línea Celular , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Mitocondrial/genética , Humanos , Potencial de la Membrana Mitocondrial/genética , Especies Reactivas de Oxígeno/metabolismo
9.
Cells ; 9(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963223

RESUMEN

DNA damage and base excision repair (BER) are actively involved in the modulation of DNA methylation and demethylation. However, the underlying molecular mechanisms remain unclear. In this study, we seek to understand the mechanisms by exploring the effects of oxidative DNA damage on the DNA methylation pattern of the tumor suppressor breast cancer 1 (BRCA1) gene in the human embryonic kidney (HEK) HEK293H cells. We found that oxidative DNA damage simultaneously induced DNA demethylation and generation of new methylation sites at the CpGs located at the promoter and transcribed regions of the gene ranging from -189 to +27 in human cells. We demonstrated that DNA damage-induced demethylation was mediated by nucleotide misincorporation by DNA polymerase ß (pol ß). Surprisingly, we found that the generation of new DNA methylation sites was mediated by coordination between pol ß and the de novo DNA methyltransferase, DNA methyltransferase 3b (DNMT3b), through the interaction between the two enzymes in the promoter and encoding regions of the BRCA1 gene. Our study provides the first evidence that oxidative DNA damage can cause dynamic changes in DNA methylation in the BRCA1 gene through the crosstalk between BER and de novo DNA methylation.


Asunto(s)
Proteína BRCA1/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Daño del ADN , Metilación de ADN/genética , ADN Polimerasa beta/metabolismo , Estrés Oxidativo , Secuencia de Bases , Guanina/análogos & derivados , Guanina/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Regiones Promotoras Genéticas , Unión Proteica , Transcripción Genética , ADN Metiltransferasa 3B
10.
DNA Repair (Amst) ; 87: 102773, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31945542

RESUMEN

Free radical attack on C1' of deoxyribose forms the oxidized abasic (AP) site 2-deoxyribonolactone (dL). In vitro, dL traps the major base excision DNA repair enzyme DNA polymerase beta (Polß) in covalent DNA-protein crosslinks (DPC) via the enzyme's N-terminal lyase activity acting on 5'-deoxyribose-5-phosphate residues. We previously demonstrated formation of Polß-DPC in cells challenged with oxidants generating significant levels of dL. Proteasome inhibition under 1,10-copper-ortho-phenanthroline (CuOP) treatment significantly increased Polß-DPC accumulation and trapped ubiquitin in the DPC, with Polß accounting for 60-70 % of the total ubiquitin signal. However, the identity of the remaining oxidative ubiquityl-DPC remained unknown. In this report, we surveyed whether additional AP lyases are trapped in oxidative DPC in mammalian cells in culture. Poly(ADP-ribose) polymerase 1 (PARP1), Ku proteins, DNA polymerase λ (Polλ), and the bifunctional 8-oxoguanine DNA glycosylase 1 (OGG1), were all trapped in oxidative DPC in mammalian cells. We also observed significant trapping of Polλ, PARP1, and OGG1 in cells treated with the alkylating agent methylmethane sulfonate (MMS), in addition to dL-inducing agents. Ku proteins, in contrast, followed a pattern of trapping similar to that for Polß: MMS failed to produce Ku-DPC, while treatment with CuOP or (less effectively) H2O2 gave rise to significant Ku-DPC. Unexpectedly, NEIL1 and NEIL3 were trapped following H2O2 treatment, but not detectably in cells exposed to CuOP. The half-life of all the AP lyase-DPC ranged from 15-60 min, consistent with their active repair. Accordingly, CuOP treatment under proteasome inhibition significantly increased the observed levels of DPC in cultured mammalian cells containing PARP1, Ku protein, Polλ, and OGG1 proteins. As seen for Polß, blocking the proteasome led to the accumulation of DPC containing ubiquitin. Thus, the ubiquitin-dependent proteolytic mechanisms that control Polß-DPC removal may also apply to a broad array of oxidative AP lyase-DPC, preventing their toxic accumulation in cells.


Asunto(s)
Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Línea Celular Tumoral , ADN Glicosilasas/metabolismo , ADN Polimerasa beta/metabolismo , Desoxirribosa , Humanos , Peróxido de Hidrógeno/metabolismo , Autoantígeno Ku/metabolismo , Oxidación-Reducción , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
11.
Biochemistry ; 59(8): 955-963, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31999437

RESUMEN

The human DNA polymerase (pol) ß cancer variant K289M has altered polymerase activity in vitro, and the structure of wild-type pol ß reveals that the K289 side chain contributes to a network of stabilizing interactions in a C-terminal region of the enzyme distal to the active site. Here, we probed the capacity of the K289M variant to tolerate strain introduced within the C-terminal region and active site. Strain was imposed by making use of a dGTP analogue containing a CF2 group substitution for the ß-γ bridging oxygen atom. The ternary complex structure of the K289M variant displays an alteration in the C-terminal region, whereas the structure of wild-type pol ß is not altered in the presence of the dGTP CF2 analogue. The alteration in the K289M variant impacts the active site, because the enzyme in the ternary complex fails to adopt the normal open to closed conformational change and assembly of the catalytically competent active site. These results reveal the importance of the K289-mediated stabilizing network in the C-terminal region of pol ß and suggest an explanation for why the K289M cancer variant is deficient in polymerase activity even though the position 289 side chain is distal to the active site.


Asunto(s)
ADN Polimerasa beta/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Dominios Proteicos
12.
Nat Struct Mol Biol ; 26(8): 695-703, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31332353

RESUMEN

UV-DDB, a key protein in human global nucleotide excision repair (NER), binds avidly to abasic sites and 8-oxo-guanine (8-oxoG), suggesting a noncanonical role in base excision repair (BER). We investigated whether UV-DDB can stimulate BER for these two common forms of DNA damage, 8-oxoG and abasic sites, which are repaired by 8-oxoguanine glycosylase (OGG1) and apurinic/apyrimidinic endonuclease (APE1), respectively. UV-DDB increased both OGG1 and APE1 strand cleavage and stimulated subsequent DNA polymerase ß-gap filling activity by 30-fold. Single-molecule real-time imaging revealed that UV-DDB forms transient complexes with OGG1 or APE1, facilitating their dissociation from DNA. Furthermore, UV-DDB moves to sites of 8-oxoG repair in cells, and UV-DDB depletion sensitizes cells to oxidative DNA damage. We propose that UV-DDB is a general sensor of DNA damage in both NER and BER pathways, facilitating damage recognition in the context of chromatin.


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Línea Celular , Daño del ADN , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/deficiencia , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Dímeros de Pirimidina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Imagen Individual de Molécula , Especificidad por Sustrato , Xerodermia Pigmentosa/patología
13.
Sci Rep ; 9(1): 9928, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289286

RESUMEN

DNA polymerase (Pol) ß is a key enzyme in base excision repair (BER), an important repair system for maintaining genomic integrity. We previously reported the presence of a Pol ß transcript containing exon α (105-nucleotide) in normal and colon cancer cell lines. The transcript carried an insertion between exons VI and VII and was predicted to encode a ~42 kDa variant of the wild-type 39 kDa enzyme. However, little is known about the biochemical properties of the exon α-containing Pol ß (exon α Pol ß) variant. Here, we first obtained evidence indicating expression of the 42 kDa exon α Pol ß variant in mouse embryonic fibroblasts. The exon α Pol ß variant was then overexpressed in E. coli, purified, and characterized for its biochemical properties. Kinetic studies of exon α Pol ß revealed that it is deficient in DNA binding to gapped DNA, has strongly reduced polymerase activity and higher Km for dNTP during gap-filling. On the other hand, the 5'-dRP lyase activity of the exon α Pol ß variant is similar to that of wild-type Pol ß. These results indicate the exon α Pol ß variant is base excision repair deficient, but does conduct 5'-trimming of a dRP group at the gap margin. Understanding the biological implications of this Pol ß variant warrants further investigation.


Asunto(s)
ADN Polimerasa beta/metabolismo , Reparación del ADN , Replicación del ADN , Fibroblastos/enzimología , Neoplasias/enzimología , Liasas de Fósforo-Oxígeno/metabolismo , Polimorfismo Genético , Animales , Células Cultivadas , ADN Polimerasa beta/química , Embrión de Mamíferos/enzimología , Exones , Humanos , Cinética , Ratones , Neoplasias/genética , Neoplasias/patología , Liasas de Fósforo-Oxígeno/química
14.
Nat Commun ; 9(1): 4213, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30310068

RESUMEN

Incorporation of mismatched nucleotides during DNA replication or repair leads to transition or transversion mutations and is considered as a predominant source of base substitution mutagenesis in cancer cells. Watson-Crick like dG:dT base pairing is considered to be an important source of genome instability. Here we show that DNA polymerase (pol) µ insertion of 7,8-dihydro-8'-oxo-dGTP (8-oxodGTP) or deoxyguanosine triphosphate (dGTP) into a model double-strand break DNA repair substrate with template base T results in efficient ligation by DNA ligase. These results indicate that pol µ-mediated dGTP mismatch insertion opposite template base T coupled with ligation could be a feature of mutation prone nonhomologous end joining during double-strand break repair.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Mutagénesis/genética , Timina/metabolismo , Disparidad de Par Base , ADN/metabolismo , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/metabolismo , Humanos
15.
J Radiat Res ; 58(5): 603-607, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992331

RESUMEN

Production of reactive oxygen and nitrogen species (ROS), such as hydrogen peroxide, superoxide and hydroxyl radicals, has been linked to cancer, and these oxidative molecules can damage DNA. Base excision repair (BER), a major repair system maintaining genome stability over a lifespan, has an important role in repairing oxidatively induced DNA damage. Failure of BER leads to toxic consequences in ROS-exposed cells, and ultimately can contribute to the pathobiology of disease. In our previous report, we demonstrated that oxidized nucleotide insertion by DNA polymerase ß (pol ß) impairs BER due to ligation failure and leads to formation of a cytotoxic repair intermediate. Biochemical and cytotoxic effects of ligation failure could mediate genome stability and influence cancer therapeutics. In this review, we discuss the importance of coordination between pol ß and DNA ligase I during BER, and how this could be a fundamental mechanism underlying human diseases such as cancer and neurodegeneration. A summary of this work was presented in a symposium at the International Congress of Radiation Research 2015 in Kyoto, Japan.


Asunto(s)
ADN Polimerasa beta/metabolismo , ADN/metabolismo , Nucleótidos/metabolismo , ADN Ligasa (ATP) , Reparación del ADN , Oxidación-Reducción , Especificidad por Sustrato , Moldes Genéticos
16.
Free Radic Biol Med ; 107: 292-300, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28179111

RESUMEN

The multi-domain protein XRCC1 is without catalytic activity, but can interact with a number of known repair proteins. The interaction between the N-terminal domain (NTD) of XRCC1 and DNA polymerase ß (pol ß) is critical for recruitment of pol ß to sites of DNA damage and repair. Crystallographic and NMR approaches have identified oxidized and reduced forms of the XRCC1 NTD, and the corresponding forms of XRCC1 have been identified in cultured mouse fibroblast cells. Both forms of NTD interact with pol ß, but the interaction is much stronger with the oxidized form. The potential for formation of the C12-C20 oxidized conformation can be removed by alanine substitution at C12 (C12A) leading to stabilized reduced XRCC1 with a lower pol ß binding affinity. Here, we compare cells expressing C12A XRCC1 (XRE8) with those expressing wild-type XRCC1 (XC5). Reduced C12A XRCC1 is detected at sites of micro-irradiation DNA damage, but provides slower recruitment of pol ß. Expression of reduced XRCC1 does not affect sensitivity to MMS or H2O2. In contrast, further oxidative stress imposed by glutathione depletion results in increased sensitization of reduced XRCC1-expressing cells to H2O2 compared with wild-type XRCC1-expressing cells. There is no indication of enhanced H2O2-generated free radicals or DNA strand breaks in XRE8 cells. However, elevated cellular PAR is found following H2O2 exposure, suggesting BER deficiency of H2O2-induced damage in the C12A expressing cells.


Asunto(s)
Daño del ADN , Reparación del ADN , Fibroblastos/fisiología , Estrés Oxidativo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Células Cultivadas , ADN Polimerasa beta/metabolismo , Peróxido de Hidrógeno/metabolismo , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Mutación/genética , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Proteína p53 Supresora de Tumor/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/química , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética
17.
Proc Natl Acad Sci U S A ; 112(33): E4571-80, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26243878

RESUMEN

During chronic inflammation, neutrophil-secreted hypochlorous acid can damage nearby cells inducing the genomic accumulation of 5-chlorocytosine (5ClC), a known inflammation biomarker. Although 5ClC has been shown to promote epigenetic changes, it has been unknown heretofore if 5ClC directly perpetrates a mutagenic outcome within the cell. The present work shows that 5ClC is intrinsically mutagenic, both in vitro and, at a level of a single molecule per cell, in vivo. Using biochemical and genetic approaches, we have quantified the mutagenic and toxic properties of 5ClC, showing that this lesion caused C→T transitions at frequencies ranging from 3-9% depending on the polymerase traversing the lesion. X-ray crystallographic studies provided a molecular basis for the mutagenicity of 5ClC; a snapshot of human polymerase ß replicating across a primed 5ClC-containing template uncovered 5ClC engaged in a nascent base pair with an incoming dATP analog. Accommodation of the chlorine substituent in the template major groove enabled a unique interaction between 5ClC and the incoming dATP, which would facilitate mutagenic lesion bypass. The type of mutation induced by 5ClC, the C→T transition, has been previously shown to occur in substantial amounts both in tissues under inflammatory stress and in the genomes of many inflammation-associated cancers. In fact, many sequence-specific mutational signatures uncovered in sequenced cancer genomes feature C→T mutations. Therefore, the mutagenic ability of 5ClC documented in the present study may constitute a direct functional link between chronic inflammation and the genetic changes that enable and promote malignant transformation.


Asunto(s)
Citosina/análogos & derivados , Mutagénesis , Mutágenos , Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinogénesis , Cromatografía Líquida de Alta Presión , Citosina/química , Análisis Mutacional de ADN , Humanos , Ácido Hipocloroso/química , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Modelos Moleculares , Mutación , Oligonucleótidos/química , Oligonucleótidos/genética , Peroxidasa/metabolismo , Análisis de Secuencia de ADN
18.
Nucleic Acids Res ; 43(4): 2271-81, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25662216

RESUMEN

Abortive ligation during base excision repair (BER) leads to blocked repair intermediates containing a 5'-adenylated-deoxyribose phosphate (5'-AMP-dRP) group. Aprataxin (APTX) is able to remove the AMP group allowing repair to proceed. Earlier results had indicated that purified DNA polymerase ß (pol ß) removes the entire 5'-AMP-dRP group through its lyase activity and flap endonuclease 1 (FEN1) excises the 5'-AMP-dRP group along with one or two nucleotides. Here, using cell extracts from APTX-deficient cell lines, human Ataxia with Oculomotor Apraxia Type 1 (AOA1) and DT40 chicken B cell, we found that pol ß and FEN1 enzymatic activities were prominent and strong enough to complement APTX deficiency. In addition, pol ß, APTX and FEN1 coordinate with each other in processing of the 5'-adenylated dRP-containing BER intermediate. Finally, other DNA polymerases and a repair factor with dRP lyase activity (pol λ, pol ι, pol θ and Ku70) were found to remove the 5'-adenylated-dRP group from the BER intermediate. However, the activities of these enzymes were weak compared with those of pol ß and FEN1.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas Nucleares/deficiencia , Adenosina Monofosfato/metabolismo , Animales , Extractos Celulares , Línea Celular , Pollos , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas de ADN Solapado/antagonistas & inhibidores , Endonucleasas de ADN Solapado/inmunología , Endonucleasas de ADN Solapado/metabolismo , Eliminación de Gen , Humanos , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
19.
PLoS One ; 10(2): e0118819, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25693136

RESUMEN

Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3) or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.


Asunto(s)
Compuestos de Bencidrilo/efectos adversos , Bromatos/farmacología , Daño del ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Guanina/metabolismo , Fenoles/efectos adversos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , ADN/efectos de los fármacos , ADN/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Terapia por Luz de Baja Intensidad/efectos adversos , Ratones , Estrés Oxidativo/efectos de los fármacos
20.
Nature ; 517(7536): 635-9, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25409153

RESUMEN

Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol ß, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.


Asunto(s)
Citotoxinas/metabolismo , Daño del ADN , ADN Polimerasa beta/química , ADN Polimerasa beta/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Nucleótidos de Desoxiguanina/toxicidad , Mutagénesis , Adenina/química , Adenina/metabolismo , Emparejamiento Base , Dominio Catalítico , Cristalografía por Rayos X , Citosina/química , Citosina/metabolismo , Citotoxinas/química , Citotoxinas/toxicidad , ADN/biosíntesis , ADN/química , Reparación del ADN , Replicación del ADN , Nucleótidos de Desoxiguanina/química , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Conformación Molecular , Neoplasias/enzimología , Neoplasias/genética , Oxidación-Reducción , Estrés Oxidativo , Electricidad Estática , Especificidad por Sustrato , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA