Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Molecules ; 23(11)2018 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30400295

RESUMEN

Nucleoside analogues have found widespread application as antiviral and antitumor agents, but not yet as antibacterials. Naturally occurring uridine-derived 'nucleoside antibiotics' target the bacterial membrane protein MraY, an enzyme involved in peptidoglycan biosynthesis and a promising target for the development of novel antibacterial agents. Muraymycins represent a nucleoside-peptide subgroup of such MraY-inhibiting natural products. As part of detailed structure-activity relationship (SAR) studies on muraymycins and their analogues, we now report novel insights into the effects of stereochemical variations in the nucleoside core structure. Using a simplified version of the muraymycin scaffold, it was shown that some formal inversions of stereochemistry led to about one order of magnitude loss in inhibitory potency towards the target enzyme MraY. In contrast, epimers of the core motif with retained inhibitory activity were also identified. These 5',6'-anti-configured analogues might serve as novel chemically tractable variations of the muraymycin scaffold for the future development of uridine-derived drug candidates.


Asunto(s)
Antibacterianos/química , Productos Biológicos/química , Nucleósidos/química , Uridina/química , Estereoisomerismo , Relación Estructura-Actividad
2.
ACS Med Chem Lett ; 9(2): 131-136, 2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-29456801

RESUMEN

Inhibition of indoleamine 2,3-dioxygenase (IDO1) is an attractive immunotherapeutic approach for the treatment of a variety of cancers. Dysregulation of this enzyme has also been implicated in other disorders including Alzheimer's disease and arthritis. Herein, we report the structure-based design of two related series of molecules: N1-substituted 5-indoleimidazoles and N1-substituted 5-phenylimidazoles. The latter (and more potent) series was accessed through an unexpected rearrangement of an imine intermediate during a Van Leusen imidazole synthesis reaction. Evidence for the binding modes for both inhibitor series is supported by computational and structure-activity relationship studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA