Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Microbiol ; 121(3): 470-480, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37898563

RESUMEN

Staphylococcus aureus is considered an extracellular pathogen, yet the bacterium is able to survive within and escape from host cells. An agr/sae mutant of strain USA300 is unable to escape from macrophages but can replicate and survive within. We questioned whether such "non-toxic" S. aureus resembles the less pathogenic coagulase-negative Staphylococcal (CoNS) species like S. epidermidis, S. carnosus, S. lugdunensis, S. capitis, S. warneri, or S. pettenkoferi. We show that the CoNS are more efficiently killed in macrophage-like THP-1 cells or in human primary macrophages. Mutations in katA, copL, the regulatory system graRS, or sigB did not impact bacterial survival in THP-1 cells. Deletion of the superoxide dismutases impaired S. aureus survival in primary macrophages but not in THP-1 cells. However, expression of the S. aureus-specific sodM in S. epidermidis was not sufficient to protect this species from being killed. Thus, at least in those cells, better bacterial survival of S. aureus could not be linked to higher protection from ROS. However, "non-toxic" S. aureus was found to be insensitive to pH, whereas most CoNS were protected when phagosomal acidification was inhibited. Thus, species differences are at least partially linked to differences in sensitivity to acidification.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus , Humanos , Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Macrófagos/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/genética
2.
PLoS Genet ; 16(12): e1009282, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33378356

RESUMEN

The stringent response is characterized by the synthesis of the messenger molecules pppGpp, ppGpp or pGpp (here collectively designated (pp)pGpp). The phenotypic consequences resulting from (pp)pGpp accumulation vary among species and can be mediated by different underlying mechanisms. Most genome-wide analyses have been performed under stress conditions, which often mask the immediate effects of (pp)pGpp-mediated regulatory circuits. In Staphylococcus aureus, (pp)pGpp can be synthesized via the RelA-SpoT-homolog, RelSau upon amino acid limitation or via one of the two small (pp)pGpp synthetases RelP or RelQ upon cell wall stress. We used RNA-Seq to compare the global effects in response to induction of the synthetase of rel-Syn (coding for the enzymatic region of RelSau) or relQ without the need to apply additional stress conditions. Induction of rel-Syn resulted in changes in the nucleotide pool similar to induction of the stringent response via the tRNA synthetase inhibitor mupirocin: a reduction in the GTP pool, an increase in the ATP pool and synthesis of pppGpp, ppGpp and pGpp. Induction of all three enzymes resulted in similar changes in the transcriptome. However, RelQ was less active than Rel-Syn and RelP, indicating strong restriction of its (pp)pGpp-synthesis activity in vivo. (pp)pGpp induction resulted in the downregulation of many genes involved in protein and RNA/DNA metabolism. Many of the (pp)pGpp upregulated genes are part of the GTP sensitive CodY regulon and thus likely regulated through lowering of the GTP pool. New CodY independent transcriptional changes were detected including genes involved in the SOS response, iron storage (e.g. ftnA, dps), oxidative stress response (e.g., perR, katA, sodA) and the psmα1-4 and psmß1-2 operons coding for cytotoxic, phenol soluble modulins (PSMs). Analyses of the ftnA, dps and psm genes in different regulatory mutants revealed that their (pp)pGpp-dependent regulation can occur independent of the regulators PerR, Fur, SarA or CodY. Moreover, psm expression is uncoupled from expression of the quorum sensing system Agr, the main known psm activator. The expression of central genes of the oxidative stress response protects the bacteria from anticipated ROS stress derived from PSMs or exogenous sources. Thus, we identified a new link between the stringent response and oxidative stress in S. aureus that is likely crucial for survival upon phagocytosis.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Ligasas/genética , Staphylococcus aureus/genética , Estrés Fisiológico , Proteínas Bacterianas/metabolismo , Ligasas/metabolismo , Staphylococcus aureus/metabolismo
3.
Free Radic Biol Med ; 161: 351-364, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33144262

RESUMEN

Slow growing stationary phase bacteria are often tolerant to multiple stressors and antimicrobials. Here, we show that the pathogen Staphylococcus aureus develops a non-specific tolerance towards oxidative stress during the stationary phase, which is mediated by the nucleotide second messenger (p)ppGpp. The (p)ppGpp0 mutant was highly susceptible to HOCl stress during the stationary phase. Transcriptome analysis of the (p)ppGpp0 mutant revealed an increased expression of the PerR, SigB, QsrR, CtsR and HrcA regulons during the stationary phase, indicating an oxidative stress response. The (p)ppGpp0 mutant showed a slight oxidative shift in the bacillithiol (BSH) redox potential (EBSH) and an impaired H2O2 detoxification due to higher endogenous ROS levels. The increased ROS levels in the (p)ppGpp0 mutant were shown to be caused by higher respiratory chain activity and elevated total and free iron levels. Consistent with these results, N-acetyl cysteine and the iron-chelator dipyridyl improved the growth and survival of the (p)ppGpp0 mutant under oxidative stress. Elevated free iron levels caused 8 to 31-fold increased transcription of Fe-storage proteins ferritin (ftnA) and miniferritin (dps) in the (p)ppGpp0 mutant, while Fur-regulated uptake systems for iron, heme or siderophores (efeOBU, isdABCDEFG, sirABC and sstADBCD) were repressed. Finally, the susceptibility of the (p)ppGpp0 mutant towards the bactericidal action of the antibiotics ciprofloxacin and tetracycline was abrogated with N-acetyl cysteine and dipyridyl. Taken together, (p)ppGpp confers tolerance to ROS and antibiotics by down-regulation of respiratory chain activity and free iron levels, lowering ROS formation to ensure redox homeostasis in S. aureus.


Asunto(s)
Guanosina Pentafosfato , Staphylococcus aureus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Homeostasis , Peróxido de Hidrógeno , Hierro/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Staphylococcus aureus/metabolismo
4.
Cell Rep ; 32(11): 108157, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937119

RESUMEN

The stringent response enables metabolic adaptation of bacteria under stress conditions and is governed by RelA/SpoT Homolog (RSH)-type enzymes. Long RSH-type enzymes encompass an N-terminal domain (NTD) harboring the second messenger nucleotide (p)ppGpp hydrolase and synthetase activity and a stress-perceiving and regulatory C-terminal domain (CTD). CTD-mediated binding of Rel to stalled ribosomes boosts (p)ppGpp synthesis. However, how the opposing activities of the NTD are controlled in the absence of stress was poorly understood. Here, we demonstrate on the RSH-type protein Rel that the critical regulative elements reside within the TGS (ThrRS, GTPase, and SpoT) subdomain of the CTD, which associates to and represses the synthetase to concomitantly allow for activation of the hydrolase. Furthermore, we show that Rel forms homodimers, which appear to control the interaction with deacylated-tRNA, but not the enzymatic activity of Rel. Collectively, our study provides a detailed molecular view into the mechanism of stringent response repression in the absence of stress.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Guanosina Pentafosfato/metabolismo , Hidrolasas/metabolismo , Ligasas/metabolismo , Proteínas Bacterianas/química , Biocatálisis , Cristalografía por Rayos X , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Relación Estructura-Actividad
5.
Nat Commun ; 11(1): 2200, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366839

RESUMEN

Bacterial persister cells are phenotypic variants that exhibit a transient non-growing state and antibiotic tolerance. Here, we provide in vitro evidence of Staphylococcus aureus persisters within infected host cells. We show that the bacteria surviving antibiotic treatment within host cells are persisters, displaying biphasic killing and reaching a uniformly non-responsive, non-dividing state when followed at the single-cell level. This phenotype is stable but reversible upon antibiotic removal. Intracellular S. aureus persisters remain metabolically active but display an altered transcriptomic profile consistent with activation of stress responses, including the stringent response as well as cell wall stress, SOS and heat shock responses. These changes are associated with multidrug tolerance after exposure to a single antibiotic. We hypothesize that intracellular S. aureus persisters may constitute a reservoir for relapsing infection and could contribute to therapeutic failures.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Células A549 , Animales , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Farmacorresistencia Bacteriana Múltiple/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/genética , Microscopía Confocal , Staphylococcus aureus/genética , Staphylococcus aureus/fisiología , Células THP-1
6.
J Bacteriol ; 202(6)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-31871032

RESUMEN

Nicotinamide adenosine dinucleotide (NAD) has been found to be covalently attached to the 5' ends of specific RNAs in many different organisms, but the physiological consequences of this modification are largely unknown. Here, we report the occurrence of several NAD-RNAs in the opportunistic pathogen Staphylococcus aureus Most prominently, RNAIII, a central quorum-sensing regulator of this bacterium's physiology, was found to be 5' NAD capped in a range from 10 to 35%. NAD incorporation efficiency into RNAIII was found to depend in vivo on the -1 position of the P3 promoter. An increase in RNAIII's NAD content led to a decreased expression of alpha- and delta-toxins, resulting in reduced cytotoxicity of the modified strains. These effects seem to be caused neither by changes in RNAIII's secondary structure nor by a different translatability upon NAD attachment, as indicated by unaltered patterns in in vitro chemical probing and toeprinting experiments. Even though we did not observe any effect of this modification on RNAIII's secondary structure or translatability in vitro, additional unidentified factors might account for the modulation of exotoxins in vivo Ultimately, the study constitutes a step forward in the discovery of new roles of the NAD molecule in bacteria.IMPORTANCE Numerous organisms, including bacteria, are endowed with a 5' NAD cap in specific RNAs. While the presence of the 5' NAD cap modulates the stability of the modified RNA species, a significant biological function and phenotype have not been assigned so far. Here, we show the presence of a 5' NAD cap in RNAIII from S. aureus, a dual-function regulatory RNA involved in quorum-sensing processes and regulation of virulence factor expression. We also demonstrate that altering the natural NAD modification ratio of RNAIII leads to a decrease in exotoxin production, thereby modulating the bacterium's virulence. Our work unveils a new layer of regulation of RNAIII and the agr system that might be linked to the redox state of the NAD molecule in the cell.


Asunto(s)
Toxinas Bacterianas/biosíntesis , NAD/metabolismo , ARN Bacteriano/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Regiones Promotoras Genéticas , Percepción de Quorum , Sitio de Iniciación de la Transcripción
7.
Sci Rep ; 8(1): 10849, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30022089

RESUMEN

Persister cells constitute a small subpopulation of bacteria that display remarkably high antibiotic tolerance and for pathogens such as Staphylococcus aureus are suspected as culprits of chronic and recurrent infections. Persisters formed during exponential growth are characterized by low ATP levels but less is known of cells in stationary phase. By enrichment from a transposon mutant library in S. aureus we identified mutants that in this growth phase displayed enhanced persister cell formation. We found that inactivation of either sucA or sucB, encoding the subunits of the α-ketoglutarate dehydrogenase of the tricarboxylic acid cycle (TCA cycle), increased survival to lethal concentrations of ciprofloxacin by 10-100 fold as did inactivation of other TCA cycle genes or atpA encoding a subunit of the F1F0 ATPase. In S. aureus, TCA cycle activity and gene expression are de-repressed in stationary phase but single cells with low expression may be prone to form persisters. While ATP levels were not consistently affected in high persister mutants they commonly displayed reduced membrane potential, and persistence was enhanced by a protein motive force inhibitor. Our results show that persister cell formation in stationary phase does not correlate with ATP levels but is associated with low membrane potential.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antibacterianos/farmacología , Ciclo del Ácido Cítrico , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple , Regulación Bacteriana de la Expresión Génica , Potenciales de la Membrana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
8.
PLoS Genet ; 14(7): e1007514, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29985927

RESUMEN

The stringent response is characterized by (p)ppGpp synthesis resulting in repression of translation and reprogramming of the transcriptome. In Staphylococcus aureus, (p)ppGpp is synthesized by the long RSH (RelA/SpoT homolog) enzyme, RelSau or by one of the two short synthetases (RelP, RelQ). RSH enzymes are characterized by an N-terminal enzymatic domain bearing distinct motifs for (p)ppGpp synthetase or hydrolase activity and a C-terminal regulatory domain (CTD) containing conserved motifs (TGS, DC and ACT). The intramolecular switch between synthetase and hydrolase activity of RelSau is crucial for the adaption of S. aureus to stress (stringent) or non-stress (relaxed) conditions. We elucidated the role of the CTD in the enzymatic activities of RelSau. Growth pattern, transcriptional analyses and in vitro assays yielded the following results: i) in vivo, under relaxed conditions, as well as in vitro, the CTD inhibits synthetase activity but is not required for hydrolase activity; ii) under stringent conditions, the CTD is essential for (p)ppGpp synthesis; iii) RelSau lacking the CTD exhibits net hydrolase activity when expressed in S. aureus but net (p)ppGpp synthetase activity when expressed in E. coli; iv) the TGS and DC motifs within the CTD are required for correct stringent response, whereas the ACT motif is dispensable, v) Co-immunoprecipitation indicated that the CTD interacts with the ribosome, which is largely dependent on the TGS motif. In conclusion, RelSau primarily exists in a synthetase-OFF/hydrolase-ON state, the TGS motif within the CTD is required to activate (p)ppGpp synthesis under stringent conditions.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Hidrolasas/genética , Ligasas/genética , Staphylococcus aureus/fisiología , Adaptación Fisiológica/genética , Secuencias de Aminoácidos/fisiología , Proteínas Bacterianas/metabolismo , Hidrolasas/metabolismo , Ligasas/metabolismo , Ribosomas/metabolismo , Estrés Fisiológico/fisiología
9.
Sci Rep ; 8(1): 2195, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391580

RESUMEN

The nutritional alarmones ppGpp and pppGpp (collectively: (p)ppGpp) are nucleotide-based second messengers enabling bacteria to respond to environmental and stress conditions. Several bacterial species contain two highly homologous (p)ppGpp synthetases named RelP (SAS2, YwaC) and RelQ (SAS1, YjbM). It is established that RelQ forms homotetramers that are subject to positive allosteric regulation by pppGpp, but structural and mechanistic insights into RelP lack behind. Here we present a structural and mechanistic characterization of RelP. In stark contrast to RelQ, RelP is not allosterically regulated by pppGpp and displays a different enzyme kinetic behavior. This discrepancy is evoked by different conformational properties of the guanosine-substrate binding site (G-Loop) of both proteins. Our study shows how minor structural divergences between close homologues result in new functional features during the course of molecular evolution.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/metabolismo , Ligasas/química , Ligasas/metabolismo , Regulación Alostérica , Sitios de Unión , Especificidad por Sustrato
10.
J Allergy Clin Immunol ; 140(4): 1054-1067.e10, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28216434

RESUMEN

BACKGROUND: The Nod-like receptor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) and Bruton tyrosine kinase (BTK) are protagonists in innate and adaptive immunity, respectively. NLRP3 senses exogenous and endogenous insults, leading to inflammasome activation, which occurs spontaneously in patients with Muckle-Wells syndrome; BTK mutations cause the genetic immunodeficiency X-linked agammaglobulinemia (XLA). However, to date, few proteins that regulate NLRP3 inflammasome activity in human primary immune cells have been identified, and clinically promising pharmacologic targeting strategies remain elusive. OBJECTIVE: We sought to identify novel regulators of the NLRP3 inflammasome in human cells with a view to exploring interference with inflammasome activity at the level of such regulators. METHODS: After proteome-wide phosphoproteomics, the identified novel regulator BTK was studied in human and murine cells by using pharmacologic and genetic BTK ablation. RESULTS: Here we show that BTK is a critical regulator of NLRP3 inflammasome activation: pharmacologic (using the US Food and Drug Administration-approved inhibitor ibrutinib) and genetic (in patients with XLA and Btk knockout mice) BTK ablation in primary immune cells led to reduced IL-1ß processing and secretion in response to nigericin and the Staphylococcus aureus toxin leukocidin AB (LukAB). BTK affected apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and caspase-1 cleavage and interacted with NLRP3 and ASC. S aureus infection control in vivo and IL-1ß release from cells of patients with Muckle-Wells syndrome were impaired by ibrutinib. Notably, IL-1ß processing and release from immune cells isolated from patients with cancer receiving ibrutinib therapy were reduced. CONCLUSION: Our data suggest that XLA might result in part from genetic inflammasome deficiency and that NLRP3 inflammasome-linked inflammation could potentially be targeted pharmacologically through BTK.


Asunto(s)
Agammaglobulinemia/genética , Síndromes Periódicos Asociados a Criopirina/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Inmunidad Adaptativa , Proteínas Adaptadoras Transductoras de Señales , Agammaglobulinemia Tirosina Quinasa , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Bacterianas/inmunología , Células Cultivadas , Humanos , Inmunidad Innata , Leucocidinas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida , Proteínas NLR , Nigericina/inmunología , Proteínas Tirosina Quinasas/genética , Proteómica , Dominio Pirina/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptor de Lamina B
11.
Nat Commun ; 7: 12304, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27470911

RESUMEN

Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections.


Asunto(s)
Lipopéptidos/metabolismo , Tensoactivos/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Células de la Médula Ósea/metabolismo , Línea Celular , Humanos , Inflamación/patología , Macrófagos/metabolismo , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/microbiología , Neutrófilos/patología , Fenoles , Sepsis/microbiología , Sepsis/patología , Sepsis/prevención & control , Solubilidad , Staphylococcus aureus/patogenicidad , Virulencia
12.
Sci Rep ; 6: 26455, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27212064

RESUMEN

Despite the importance of phages in driving horizontal gene transfer (HGT) among pathogenic bacteria, the underlying molecular mechanisms mediating phage adsorption to S. aureus are still unclear. Phage ϕ11 is a siphovirus with a high transducing efficiency. Here, we show that the tail protein Gp45 localized within the ϕ11 baseplate. Phage ϕ11 was efficiently neutralized by anti-Gp45 serum, and its adsorption to host cells was inhibited by recombinant Gp45 in a dose-dependent manner. Flow cytometry analysis demonstrated that biotin-labelled Gp45 efficiently stained the wild-type S. aureus cell but not the double knockout mutant ΔtarM/S, which lacks both α- and ß-O-GlcNAc residues on its wall teichoic acids (WTAs). Additionally, adsorption assays indicate that GlcNAc residues on WTAs and O-acetyl groups at the 6-position of muramic acid residues in peptidoglycan are essential components of the ϕ11 receptor. The elucidation of Gp45-involved molecular interactions not only broadens our understanding of siphovirus-mediated HGT, but also lays the groundwork for the development of sensitive affinity-based diagnostics and therapeutics for S. aureus infection.


Asunto(s)
Siphoviridae/fisiología , Staphylococcus aureus/virología , Ácidos Teicoicos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Acetilglucosamina/metabolismo , Adsorción , Anticuerpos/metabolismo , Pared Celular/metabolismo , Técnicas de Inactivación de Genes , Transferencia de Gen Horizontal , Siphoviridae/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas del Envoltorio Viral/química
13.
Cell Microbiol ; 18(8): 1172-83, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26895738

RESUMEN

Although Staphylococcus aureus is not a classical intracellular pathogen, it can survive within phagocytes and many other cell types. However, the pathogen is also able to escape from cells by mechanisms that are only partially understood. We analysed a series of isogenic S. aureus mutants of the USA300 derivative JE2 for their capacity to destroy human macrophages from within. Intracellular S. aureus JE2 caused severe cell damage in human macrophages and could efficiently escape from within the cells. To obtain this full escape phenotype including an intermittent residency in the cytoplasm, the combined action of the regulatory systems Sae and Agr is required. Mutants in Sae or mutants deficient in the Sae target genes lukAB and pvl remained in high numbers within the macrophages causing reduced cell damage. Mutants in the regulatory system Agr or in the Agr target gene psmα were largely similar to wild-type bacteria concerning cell damage and escape efficiency. However, these strains were rarely detectable in the cytoplasm, emphasizing the role of phenol-soluble modulins (PSMs) for phagosomal escape. Thus, Sae-regulated toxins largely determine damage and escape from within macrophages, whereas PSMs are mainly responsible for the escape from the phagosome into the cytoplasm. Damage of macrophages induced by intracellular bacteria was linked neither to activation of apoptosis-related caspase 3, 7 or 8 nor to NLRP3-dependent inflammasome activation.


Asunto(s)
Macrófagos/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Apoptosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caspasas/metabolismo , Células Cultivadas , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Inflamasomas/metabolismo , Leucocidinas/genética , Leucocidinas/metabolismo , Fagosomas/microbiología , Infecciones Estafilocócicas/inmunología
14.
PLoS One ; 9(5): e96416, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24810614

RESUMEN

High lipoprotein expression and potent activation of host Toll-like receptor-2 (TLR2) are characteristic features of the staphylococcal species. Expression of TLR2 in the host is important for clearance of Staphylococcus aureus infection and host survival. Thus, we hypothesized that bacterial regulation of its intrinsic TLR2-stimulatory capacity could represent a means for immune evasion or host adaptation. We, therefore, compared clinical S. aureus isolates in regards to their TLR2 activation potential and assessed the bacterial factors that modulate TLR2-mediated recognition. S. aureus isolates displayed considerable variability in TLR2-activity with low to absent TLR2-activity in 64% of the isolates tested (68/106). Notably, strain-specific TLR2-activity was independent of the strain origin, e.g. no differences were found between strains isolated from respiratory specimen from cystic fibrosis patients or those isolated from invasive disease specimen. TLR2-activity correlated with protein A expression but not with the agr status. Capsule expression and small colony variant formation had a negative impact on TLR2-activity but any disruption of cell wall integrity enhanced TLR2 activation. Altogether, heterogeneity in host TLR2-activity reflects differences in metabolic activity and cell wall synthesis and/or remodeling.


Asunto(s)
Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Receptor Toll-Like 2/metabolismo , Pared Celular/inmunología , Pared Celular/metabolismo , Células HEK293 , Humanos , Inmunidad Innata , Lipoproteínas/metabolismo , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/aislamiento & purificación
15.
BMC Genomics ; 15: 291, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24734910

RESUMEN

BACKGROUND: It has been shown previously that aminocoumarin antibiotics such as novobiocin lead to immediate downregulation of recA expression and thereby inhibit the SOS response, mutation frequency and recombination capacity in Staphylococcus aureus. Aminocoumarins function by inhibiting the ATPase activity of DNA gyrase subunit B with a severe impact on DNA supercoiling. RESULTS: Here, we have analysed the global impact of the DNA relaxing agent novobiocin on gene expression in S. aureus. Using a novobiocin-resistant mutant, it became evident that the change in recA expression is due to gyrase inhibition. Microarray analysis and northern blot hybridisation revealed that the expression levels of a distinct set of genes were increased (e.g., recF-gyrB-gyrA, the rib operon and the ure operon) or decreased (e.g., arlRS, recA, lukA, hlgC and fnbA) by novobiocin. The two-component ArlRS system was previously found to decrease the level of supercoiling in S. aureus. Thus, downregulation of arlRS might partially compensate for the relaxing effect of novobiocin. Global analysis and gene mapping of supercoiling-sensitive genes did not provide any indication that they are clustered in the genome. Promoter fusion assays confirmed that the responsiveness of a given gene is intrinsic to the promoter region but independent of the chromosomal location. CONCLUSIONS: The results indicate that the molecular properties of a given promoter, rather than the chromosomal topology, dictate the responsiveness to changes in supercoiling in the pathogen Staphylococcus aureus.


Asunto(s)
Aminocumarinas/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Antineoplásicos/farmacología , Proteínas Bacterianas/genética , Girasa de ADN/metabolismo , ADN Superhelicoidal/efectos de los fármacos , ADN Superhelicoidal/genética , Perfilación de la Expresión Génica , Genoma Bacteriano , Familia de Multigenes , Regiones Promotoras Genéticas , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Virulencia/genética
16.
Cell Microbiol ; 16(4): 451-65, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24164701

RESUMEN

Staphylococcus aureus is a Gram-positive human pathogen that is readily internalized by professional phagocytes such as macrophages and neutrophils but also by non-professional phagocytes such as epithelial or endothelial cells. Intracellular bacteria have been proposed to play a role in evasion of the innate immune system and may also lead to dissemination within migrating phagocytes. Further, S. aureus efficiently lyses host cells with a battery of cytolytic toxins. Recently, phenol-soluble modulins (PSM) have been identified to comprise a genus-specific family of cytolytic peptides. Of these the PSMα peptides have been implicated in killing polymorphonuclear leucocytes after phagocytosis. We questioned if the peptides were active in destroying endosomal membranes to avoid lysosomal killing of the pathogen and monitored integrity of infected host cell endosomes by measuring the acidity of the intracellular bacterial microenvironment via flow cytometry and by a reporter recruitment technique. Isogenic mutants of the methicillin-resistant S. aureus (MRSA) strains USA300 LAC, USA400 MW2 as well as the strongly cytolytic methicillin-sensitive strain 6850 were compared with their respective wild type strains. In all three genetic backgrounds, PSMα mutants were unable to escape from phagosomes in non-professional (293, HeLa, EAhy.926) and professional phagocytes (THP-1), whereas mutants in PSMß and δ-toxin as well as ß-toxin, phosphatidyl inositol-dependent phospholipase C and Panton Valentine leucotoxin escaped with efficiencies of the parental strains. S. aureus replicated intracellularly only in presence of a functional PSMα operon thereby illustrating that bacteria grow in the host cell cytoplasm upon phagosomal escape.


Asunto(s)
Toxinas Bacterianas/metabolismo , Ácidos Carboxílicos/análisis , Citoplasma/microbiología , Fagosomas/química , Fagosomas/efectos de los fármacos , Staphylococcus aureus/enzimología , Staphylococcus aureus/crecimiento & desarrollo , Línea Celular , Células Epiteliales/microbiología , Fibroblastos/microbiología , Citometría de Flujo , Humanos , Monocitos/microbiología , Fagosomas/microbiología , Staphylococcus aureus/fisiología
17.
J Bacteriol ; 196(4): 894-902, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24336937

RESUMEN

The stringent response is a conserved global regulatory mechanism that is related to the synthesis of (p)ppGpp nucleotides. Gram-positive bacteria, such as Staphylococcus aureus, possess three (p)ppGpp synthases: the bifunctional RSH (RelA/SpoT homolog) protein, which consists of a (p)ppGpp synthase and a (p)ppGpp hydrolase domain, and two truncated (p)ppGpp synthases, designated RelP and RelQ. Here, we characterized these two small (p)ppGpp synthases. Biochemical analyses of purified proteins and in vivo studies revealed a stronger synthetic activity for RelP than for RelQ. However, both enzymes prefer GDP over GTP as the pyrophosphate recipient to synthesize ppGpp. Each of the enzymes was shown to be responsible for the essentiality of the (p)ppGpp hydrolase domain of the RSH protein. The staphylococcal RSH-hydrolase is an efficient enzyme that prevents the toxic accumulation of (p)ppGpp. Expression of (p)ppGpp synthases in a hydrolase-negative background leads not only to growth arrest but also to cell death. Transcriptional analyses showed that relP and relQ are strongly induced upon vancomycin and ampicillin treatments. Accordingly, mutants lacking relP and relQ showed a significantly reduced survival rate upon treatments with cell wall-active antibiotics. Thus, RelP and RelQ are active (p)ppGpp synthases in S. aureus that are induced under cell envelope stress to mediate tolerance against these conditions.


Asunto(s)
Tolerancia a Medicamentos , Regulación Bacteriana de la Expresión Génica , Ligasas/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/fisiología , Estrés Fisiológico , Ampicilina/metabolismo , Antibacterianos/metabolismo , Pared Celular/efectos de los fármacos , Coenzimas/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Ligasas/aislamiento & purificación , Viabilidad Microbiana/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Vancomicina/metabolismo
18.
PLoS Pathog ; 8(11): e1003016, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209405

RESUMEN

The stringent response is initiated by rapid (p)ppGpp synthesis, which leads to a profound reprogramming of gene expression in most bacteria. The stringent phenotype seems to be species specific and may be mediated by fundamentally different molecular mechanisms. In Staphylococcus aureus, (p)ppGpp synthesis upon amino acid deprivation is achieved through the synthase domain of the bifunctional enzyme RSH (RelA/SpoT homolog). In several firmicutes, a direct link between stringent response and the CodY regulon was proposed. Wild-type strain HG001, rsh(Syn), codY and rsh(Syn), codY double mutants were analyzed by transcriptome analysis to delineate different consequences of RSH-dependent (p)ppGpp synthesis after induction of the stringent response by amino-acid deprivation. Under these conditions genes coding for major components of the protein synthesis machinery and nucleotide metabolism were down-regulated only in rsh positive strains. Genes which became activated upon (p)ppGpp induction are mostly regulated indirectly via de-repression of the GTP-responsive repressor CodY. Only seven genes, including those coding for the cytotoxic phenol-soluble modulins (PSMs), were found to be up-regulated via RSH independently of CodY. qtRT-PCR analyses of hallmark genes of the stringent response indicate that an RSH activating stringent condition is induced after uptake of S. aureus in human polymorphonuclear neutrophils (PMNs). The RSH activity in turn is crucial for intracellular expression of psms. Accordingly, rsh(Syn) and rsh(Syn), codY mutants were less able to survive after phagocytosis similar to psm mutants. Intraphagosomal induction of psmα1-4 and/or psmß1,2 could complement the survival of the rsh(Syn) mutant. Thus, an active RSH synthase is required for intracellular psm expression which contributes to survival after phagocytosis.


Asunto(s)
Proteínas Bacterianas/inmunología , Regulación Bacteriana de la Expresión Génica/inmunología , Ligasas/inmunología , Viabilidad Microbiana/inmunología , Neutrófilos/inmunología , Fagocitosis/inmunología , Proteínas Represoras/inmunología , Staphylococcus aureus/inmunología , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Ligasas/genética , Viabilidad Microbiana/genética , Datos de Secuencia Molecular , Mutación , Neutrófilos/microbiología , Regulón/inmunología , Proteínas Represoras/genética , Ovinos , Staphylococcus aureus/genética
19.
Int J Med Microbiol ; 300(8): 520-5, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20843740

RESUMEN

Staphylococcus aureus colonizes the lungs of cystic fibrosis (CF) patients and despite treatment with antibiotics results in recurrent and relapsing infections. With increasing duration of the infection, the bacterial population is exposed more and more to changing selective pressures exerted by the host immune system, to frequent therapeutic interventions, and to interference with other microorganisms. S. aureus has evolved a variety of strategies to adapt to these challenges: Recombination and mutation provide the population with a preselected heterogeneity, resulting in an inheritable shift of phenotypic traits. This includes the emergence of isolates with mutations in metabolic (e.g. small-colony variants) and regulatory (e.g. agr mutants) genes. Additionally, phages become mobilized with a higher frequency during infection, raising the propensity for recombination. On the other hand, S. aureus can also adapt to the CF lung using regulatory mechanisms which are not well understood in this context. The quorum-sensing system agr is not activated during lung infection in CF, which is consistent with a proposed biofilm mode of growth in the lungs and also with the observation that in CF patients the organism usually remains localized in the lungs without systemic manifestation. Altogether, adaptive processes result in the generation of a heterogeneous S. aureus population in the CF lung which is highly protected against antibiotic therapy, expressing factors necessary for persistence rather than virulence.


Asunto(s)
Portador Sano/microbiología , Fibrosis Quística/complicaciones , Pulmón/microbiología , Neumonía Estafilocócica/microbiología , Staphylococcus aureus/patogenicidad , Adaptación Biológica , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Variación Genética , Humanos , Recurrencia , Selección Genética , Staphylococcus aureus/clasificación , Staphylococcus aureus/genética
20.
Int J Med Microbiol ; 300(2-3): 142-7, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19783475

RESUMEN

In most bacteria, nutrient limitations provoke the stringent control by the rapid synthesis of the alarmones pppGpp and ppGpp. The most prominent and highly conserved reaction is the repression of rRNA synthesis. Additionally, (p)ppGpp synthesis is also linked to many other physiological changes involving gene activation/repression but also protein translation, enzyme activation and replication. Whereas much of the basic research was performed with Escherichia coli there is now growing evidence that in gram-positive bacteria there are fundamental differences in (p)ppGpp synthesis, regulation and molecular function. Here we will focus on basic differences between firmicutes and proteobacteria, particularly E. coli.


Asunto(s)
Bacterias Grampositivas/metabolismo , Guanosina Pentafosfato/fisiología , Guanosina Tetrafosfato/fisiología , Adaptación Fisiológica , Regulación Bacteriana de la Expresión Génica , Bacterias Grampositivas/química , Bacterias Grampositivas/genética , Ligasas/química , Ligasas/genética , Ligasas/metabolismo , Proteobacteria/química , Proteobacteria/genética , Proteobacteria/metabolismo , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA