Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Food Chem Toxicol ; 174: 113695, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36863560

RESUMEN

Gap junctional intercellular communication (GJIC) is composed of connexin (Cx) and plays an important role in maintaining intracellular homeostasis. Loss of GJIC is involved in the early stages of cancer pathways of non-genotoxic carcinogens; however, the effect of genotoxic carcinogens, including polycyclic aromatic hydrocarbons (PAHs), on GJIC function remains unclear. Therefore, we determined whether and how a representative PAH 7,12-dimethylbenz[a]anthracene (DMBA) suppresses GJIC in WB-F344 cells. First, DMBA significantly inhibited GJIC and dose-dependently reduced Cx43 protein and mRNA expression. In contrast, Cx43 promoter activity was upregulated after DMBA treatment via the induction of specificity protein 1 and hepatocyte nuclear factor 3ß, indicating that the promoter-independent loss of Cx43 mRNA can be associated with the inhibition of mRNA stability, which was verified by actinomycin D assay. In addition to a decrease in mRNA stability involved in human antigen R, we also observed DMBA-induced acceleration of Cx43 protein degradation, which was closely related to the loss of GJIC through Cx43 phosphorylation via MAPK activation. In conclusion, the genotoxic carcinogen DMBA suppresses GJIC by inhibiting post-transcriptional and post-translational processing of Cx43. Our findings suggest that the GJIC assay is an efficient short-term screening test for predicting the carcinogenic potential of genotoxic carcinogens.


Asunto(s)
Carcinógenos , Conexina 43 , Ratas , Animales , Humanos , Carcinógenos/metabolismo , Conexina 43/metabolismo , Ratas Endogámicas F344 , Hígado , Comunicación Celular , Uniones Comunicantes/metabolismo , Fosforilación , Antracenos/metabolismo , Antracenos/farmacología , ARN Mensajero/metabolismo
2.
Phytomedicine ; 91: 153670, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34391081

RESUMEN

BACKGROUND: Sedum species are reported to possess diverse pharmacological activities in various solid tumors. However, the anticancer functions of Sedum orizyfolium and its constituents have never been determined in human cancers. PURPOSE: The present study focused on addressing the inhibition efficacy of the methanol extract of S. orizyfolium (MESO) and its constituents and the molecular mechanism underlying invasion and epithelial-to-mesenchymal transition (EMT) in oral squamous cell carcinoma (OSCC) cell lines. STUDY DESIGN/METHODS: After MESO treatment, a wound-healing assay, an invasion assay, and immunocytochemistry were performed in OSCC cell lines, coupled with in silico analysis and immunohistochemistry in OSCC patient samples, to investigate the role of the EMT transcription factor Slug. Trehalose, an active component of MESO, was identified through gas chromatography-mass spectrometry. RESULTS: Among the methanol extracts of 18 various wild plants from South Korea, MESO exhibited the highest anticancer functionality in OSCC cells by downregulating Slug expression. In silico analysis and immunohistochemistry indicated that elevated Slug levels are remarkably associated with tumor progression and invasion in patients with OSCC, suggesting that changes in Slug expression alter EMT progression and invasion in OSCC. Notably, treatment with trehalose, a sugar component of MESO, inhibited invasiveness and Slug expression in OSCC cells. CONCLUSION: Cumulatively, this study highlighted the beneficial role of MESO and trehalose in the inhibition of invasiveness of OSCC cells via suppression of Slug expression and suggested a new design for potential chemotherapeutic drugs against OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Extractos Vegetales , Sedum , Factores de Transcripción de la Familia Snail/metabolismo , Trehalosa/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Metanol , Neoplasias de la Boca/tratamiento farmacológico , Invasividad Neoplásica , Extractos Vegetales/farmacología , Sedum/química , Carcinoma de Células Escamosas de Cabeza y Cuello
3.
Free Radic Biol Med ; 174: 100-109, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34384867

RESUMEN

Although cisplatin is an effective platinum-based anticancer drug against solid cancer, its availability is limited owing to its adverse side effects. Our study aimed to identify the potential relationship within cisplatin-induced multi-organ physiological changes and genetic factors associated with sex differences in nephrotoxicity susceptibility. To investigate this, mice received a single intraperitoneal injection of cisplatin. Cisplatin administration resulted in renal dysfunction, as evidenced by the elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine) and the degree of histopathological alterations. In particular, along with testicular damage and low testosterone levels, we also observed a decrease in male-specific (CYP3A2) or male-dominant (CYP2B1 and CYP3A1) CYP isoforms in the livers of rats with hepatotoxicity following cisplatin treatment, which may be associated with an imbalance in male hormone regulation caused by renal and testicular injury. Notably, we found that male rats were more susceptible to cisplatin-induced nephrotoxicity, as characterized by histopathological and biochemical analyses. Therefore, RNA sequencing was performed at baseline (pre-treatment) and at 48 h following cisplatin administration (post-treatment) to identify the genes associated with sex differences in nephrotoxicity susceptibility. Gap junctions, which play a role in replenishing damaged cells to maintain tissue homeostasis, and mismatch repair associated with a pathological apoptotic mechanism against cisplatin nephrotoxicity were significantly enriched only in males following cisplatin treatment. Moreover, among the 322 DEGs showing different basal expression patterns between males and females before cisplatin treatment, the male expressed high levels of genes, which are responsible for transmembrane transport and regulation of apoptotic process, pre-cisplatin treatment; additionally, genes involved in the PI3K-Akt signaling pathway and the oxidation-reduction process were significantly lower in males before cisplatin treatment. Collectively, our comprehensive findings provided valuable insight into the potential mechanisms of sex differences in cisplatin-induced nephrotoxicity susceptibility.


Asunto(s)
Antineoplásicos , Cisplatino , Animales , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Creatinina , Femenino , Riñón , Masculino , Ratones , Fosfatidilinositol 3-Quinasas , Ratas , Caracteres Sexuales , Transcriptoma
4.
Free Radic Biol Med ; 148: 128-139, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31911150

RESUMEN

Clinical cisplatin use is often limited by its drug-induced liver injury (DILI). Particularly, individual differences in susceptibility to DILI can cause life-threatening medical conditions. This study aimed to uncover the inherent genetic factors determining individual variations in hepatotoxicity susceptibility. Rats were subjected to liver biopsy and a 3-week postoperative recovery period before cisplatin administration. At 2 days post-treatment with cisplatin, the rats exhibited histopathological and serum biochemical alterations in the liver, and changes in hydrogen peroxide and cytochrome P450-2E1 levels. Based on these results of liver-related biochemical markers, 32 rats were grouped into the susceptible (top five) and resistant (bottom five) groups. Using RNA-sequencing, we compared gene expressions in the liver pre-biopsied from these two groups before cisplatin treatment and found 161 differently expressed genes between the Susceptible and Resistant groups. Among them, the clock-controlled Ccrn4l responsible for 'rhythmic process' was identified as a common gene downregulated inherently prior to drug exposure in both cisplatin- and acetaminophen-sensitive animals. Additionally, low Ccrn4l levels before cisplatin treatment in the Susceptible group were maintained even after treatment, with decreased antioxidants, increased nitration, and apoptosis. The relationship of Ccrn4l with catalase and mitochondrial RNAs in the liver was confirmed by correlation of their hepatic levels among individuals and similar patterns of circadian variation in their mRNA expression. Remarkably, Ccrn4l knockdown promoted cisplatin-induced mitochondrial dysfunction in WB-F344 cells with antioxidant catalase and apoptosis-related Bax changes. Inherent individual hepatic Ccrn4l level might be a novel factor affecting cisplatin-induced hepatotoxicity susceptibility, possibly through regulation of mitochondrial and antioxidant functions.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cisplatino , Acetaminofén , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Cisplatino/toxicidad , Hígado/metabolismo , Estrés Oxidativo , Ratas , Ratas Endogámicas F344
5.
J Clin Biochem Nutr ; 64(2): 97-105, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30936621

RESUMEN

Fisetin was reported to have an anti-proliferative and apoptotic activity as a novel anti-cancer agent in various cancer cell lines. However, the possible molecular targets for the anti-cancer effect of fisetin in human head and neck cancer (HNCC) have not yet been clarified. In this study, the influence of fisetin on the growth and apoptosis of HNCCs were examined. In HSC3 cells, fisetin treatment reduced the viability and induced apoptosis. Through the results from the screening of the expression profile of apoptosis-related genes, sestrin 2 (SESN2) was functionally involved in fisetin-mediated apoptosis showing the knockdown of SESN2 by siRNA clearly restored fisetin-induced apoptosis. In addition, fisetin reduced the protein expression levels of phospho-mTOR (p-mTOR) and Mcl-1, which are the downstream molecules of SESN2. It also induced PARP cleavage by inducing an increase in the expression levels of SESN2 together with reducing mTOR and Mcl-1 proteins in other three HNCCs (MC3, Ca9.22, and HN22). Taken together, our findings suggest that the anti-cancer effect of fisetin on HNCCs is associated with SESN2/mTOR/Mcl-1 signaling axis.

6.
Tumour Biol ; 40(5): 1010428318776170, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29764340

RESUMEN

Silymarin, a standardized extract from milk thistle fruits has been found to exhibit anti-cancer effects against various cancers. Here, we explored the anti-cancer activity of silymarin and its molecular target in human oral cancer in vitro and in vivo. Silymarin dose-dependently inhibited the proliferation of HSC-4 oral cancer cells and promoted caspase-dependent apoptosis. A human apoptosis protein array kit showed that death receptor 5 may be involved in silymarin-induced apoptosis, which was also shown through western blotting, immunocytochemistry, and reverse transcription-polymerase chain reaction. Silymarin increased cleaved caspase-8 and truncated Bid, leading to accumulation of cytochrome c. In addition, silymarin activated death receptor 5/caspase-8 to induce apoptotic cell death in two other oral cancer cell lines (YD15 and Ca9.22). Silymarin also suppressed tumor growth and volume without any hepatic or renal toxicity in vivo. Taken together, these results provide in vitro and in vivo evidence supporting the anti-cancer effect of silymarin and death receptor 5, and caspase-8 may be essential players in silymarin-mediated apoptosis in oral cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Silimarina/farmacología , Apoptosis/efectos de los fármacos , Caspasa 8/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocromos c/metabolismo , Humanos , Neoplasias de la Boca/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
7.
Mol Med Rep ; 17(4): 5258-5264, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29363716

RESUMEN

Potentilla discolor has been used in traditional Chinese medicine for the treatment of hyperglycemia. However, the potential role of Potentilla discolor against cancer and its mode of action remain to be fully elucidated. The present study explored the apoptotic effect of methanol extract of Potentilla discolor (MEPD) in human mucoepidermoid carcinoma (MEC) cell lines of salivary glands. MEPD markedly suppressed the growth and induced apoptotic cell death in MC3 and YD15 cells. MEPD treatment significantly upregulated the expression of PUMA and reduced STAT3 phosphorylation. Overexpression of STAT3 partially recovered the growth of MEC cells inhibited by MEPD. In addition, dephosphorylation of STAT3 by cryptotanshinone (a potent STAT3 inhibitor) was sufficient to inhibit the growth of MEC cells and induce apoptosis via affecting PUMA protein. These results suggest that MEPD has a potential anticancer property via the STAT3/PUMA signaling axis in human MEC cells of salivary gland.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma Mucoepidermoide/metabolismo , Extractos Vegetales/farmacología , Potentilla/química , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos
8.
Oncotarget ; 8(53): 91306-91315, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29207645

RESUMEN

Nitidine chloride (NC) is a natural alkaloid compound derived from the plant Zanthoxylum nitidum and is known for its therapeutic anticancer potential. In this study, we investigated the effects of NC on growth and signaling pathways in human oral cancer cell lines and a tumor xenograft model. The apoptotic effects and related molecular targets of NC on human oral cancer were investigated using trypan blue exclusion assay, DAPI staining, Live/Dead assay, Western blotting, Immunohistochemistry/Immunofluorescence and a nude mouse tumor xenograft. NC decreased cell viability in both HSC3 and HSC4 cell lines; further analysis demonstrated that cell viability was reduced via apoptosis. STAT3 was hyper-phosphorylated in human oral squamous cell carcinoma (OSCC) compared with normal oral mucosa (NOM) and dephosphorylation of STAT3 by the potent STAT3 inhibitor, cryptotanshinone or NC decreased cell viability and induced apoptosis. NC also suppressed cell viability and induced apoptosis accompanied by dephosphorylating STAT3 in four other oral cancer cell lines. In a tumor xenograft model bearing HSC3 cell tumors, NC suppressed tumor growth and induced apoptosis by regulating STAT3 signaling without liver or kidney toxicity. Our findings suggest that NC is a promising chemotherapeutic candidate against human oral cancer.

9.
Arch Oral Biol ; 84: 94-99, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28965045

RESUMEN

OBJECTIVE: Caffeic acid phenethyl ester (CAPE), a natural honeybee product exhibits a spectrum of biological activities including antimicrobial, anti-inflammatory, antioxidant and antitumor actions. The purpose of this research was to investigate the anticancer potential of CAPE and its molecular mechanism in human oral cancer cell lines (YD15, HSC-4 and HN22 cells). DESIGN: To determine the apoptotic activity of CAPE and identify its molecular targets, trypan blue exclusion assay, soft agar assay, Western blot analysis, DAPI staining, and live/dead assay were performed. RESULTS: CAPE significantly suppressed transformation of neoplastic cells induced by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol 13-acetate (TPA) without inhibiting growth. CAPE treatment inhibited cell growth, increased the cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP), and augmented the number of fragmented nuclei in human oral cancer cell lines. CAPE activated Bax protein causing it to undergo a conformational change, translocate to the mitochondrial outer membrane, and oligomere. CAPE also significantly increased Puma expression and interestingly Puma and Bax were co-localized. CONCLUSION: Overall, these results suggest that CAPE is a potent apoptosis-inducing agent in human oral cancer cell lines. Its action is accompanied by up-regulation of Bax and Puma proteins.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos Cafeicos/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Alcohol Feniletílico/análogos & derivados , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores de Tumor/metabolismo , Western Blotting , Línea Celular Tumoral , Transformación Celular Neoplásica/efectos de los fármacos , Humanos , Inmunohistoquímica , Alcohol Feniletílico/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Coloración y Etiquetado , Proteína X Asociada a bcl-2/metabolismo
10.
Cell Oncol (Dordr) ; 40(3): 235-246, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28401485

RESUMEN

PURPOSE: Approximately 20% of all salivary gland cancer patients who are treated with current treatment modalities will ultimately develop metastases. Its most common form, mucoepidermoid carcinoma (MEC) is a highly aggressive tumor with an overall 5-year survival rate of ~30%. Until now, several chemotherapeutic drugs have been tested for the treatment of salivary gland tumors, but the results have been disappointing and the drugs often cause unwanted side effects. Therefore, several recent studies have focused on the potential of alternative and/or complementary therapeutic options, including the use of silymarin. METHODS: The effects of silymarin and its active component silibinin on salivary gland cancer-derived MC3 and HN22 cells and their underlying molecular mechanisms were examined using trypan blue exclusion, 4'-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead, Annexin V/PI staining, mitochondrial membrane potential (ΔΨm) measurement, quantitative RT-PCR, soft agar colony formation and Western blotting analyses. RESULTS: We found that silymarin and silibinin dramatically increased the expression of the pro-apoptotic protein Bim in a concentration- and time-dependent manner and, concomitantly, induced apoptosis in MC3 and HN22 cells. We also found that ERK1/2 signaling inhibition successfully sensitized these cells to the apoptotic effects of silymarin and silibinin, which indicates that the ERK1/2 signaling pathway may act as an upstream regulator that modulates the silymarin/silibinin-induced Bim signaling pathway. CONCLUSIONS: Taken together, we conclude that ERK1/2 signaling pathway inhibition by silymarin and silibinin increases the expression of the pro-apoptotic Bcl-2 family member Bim which, subsequently, induces mitochondria-mediated apoptosis in salivary gland cancer-derived cells.


Asunto(s)
Proteína 11 Similar a Bcl2/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias de las Glándulas Salivales/patología , Silimarina/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Silibina
11.
Arch Oral Biol ; 73: 1-6, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27632413

RESUMEN

OBJECTIVE: The mimetic BH3 ABT-737, a potent inhibitor of anti-apoptotic Bcl-2 family proteins, has potential as anti-cancer drug in many cancers. Recently, patients treated with ABT-737 have developed drug tolerance during cancer therapy. Therefore, we examined whether ABT-737 is effective in killing MC-3 and HSC-3 human oral cancer cells either alone or in combination with the oncogenic kinase inhibitor, sorafenib. DESIGN: The potentiating activities of sorafenib in ABT-737-induced apoptosis were determined using trypan blue exclusion assay, DAPI staining, cell viability assay and Western blot analysis. RESULTS: Combined use of ABT-737 and sorafenib synergistically suppressed cell viability and induced apoptosis compared with either compound individually. The combination of ABT-737 and sorafenib altered only Bax and Bak proteins and their activations, resulting in mitochondrial translocation of Bax from the cytosol. Additionally, combination treatment-mediated apoptosis may be correlated with ERK and STAT3 pathways. CONCLUSIONS: These results suggest that sorafenib may effectively overcome ABT-737 resistance to apoptotic cell death, which can be a new potential chemotherapeutic strategy against human oral cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Niacinamida/análogos & derivados , Nitrofenoles/farmacología , Compuestos de Fenilurea/farmacología , Sulfonamidas/farmacología , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quimioterapia Combinada , Humanos , Neoplasias de la Boca , Niacinamida/farmacología , Piperazinas/farmacología , Sorafenib , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA