Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cancer Lett ; 526: 155-167, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826548

RESUMEN

Obscurins, encoded by the OBSCN gene, are giant cytoskeletal proteins with structural and regulatory roles. Large scale omics analyses reveal that OBSCN is highly mutated across different types of cancer, exhibiting a 5-8% mutation frequency in pancreatic cancer. Yet, the functional role of OBSCN in pancreatic cancer progression and metastasis has to be delineated. We herein show that giant obscurins are highly expressed in normal pancreatic tissues, but their levels are markedly reduced in pancreatic ductal adenocarcinomas. Silencing of giant obscurins in non-tumorigenic Human Pancreatic Ductal Epithelial (HPDE) cells and obscurin-expressing Panc5.04 pancreatic cancer cells induces an elongated, spindle-like morphology and faster cell migration via cytoskeletal remodeling. Specifically, depletion of giant obscurins downregulates RhoA activity, which in turn results in reduced focal adhesion density, increased microtubule growth rate and faster actin dynamics. Although OBSCN knockdown is not sufficient to induce de novo tumorigenesis, it potentiates tumor growth in a subcutaneous implantation model and exacerbates metastasis in a hemispleen murine model of pancreatic cancer metastasis, thereby shortening survival. Collectively, these findings reveal a critical role of giant obscurins as tumor suppressors in normal pancreatic epithelium whose loss of function induces RhoA-dependent cytoskeletal remodeling, and promotes cell migration, tumor growth and metastasis.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Neoplasias Pancreáticas/patología
2.
Nat Biomed Eng ; 5(1): 26-40, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32989283

RESUMEN

Clinical scores, molecular markers and cellular phenotypes have been used to predict the clinical outcomes of patients with glioblastoma. However, their clinical use has been hampered by confounders such as patient co-morbidities, by the tumoral heterogeneity of molecular and cellular markers, and by the complexity and cost of high-throughput single-cell analysis. Here, we show that a microfluidic assay for the quantification of cell migration and proliferation can categorize patients with glioblastoma according to progression-free survival. We quantified with a composite score the ability of primary glioblastoma cells to proliferate (via the protein biomarker Ki-67) and to squeeze through microfluidic channels, mimicking aspects of the tight perivascular conduits and white-matter tracts in brain parenchyma. The assay retrospectively categorized 28 patients according to progression-free survival (short-term or long-term) with an accuracy of 86%, predicted time to recurrence and correctly categorized five additional patients on the basis of survival prospectively. RNA sequencing of the highly motile cells revealed differentially expressed genes that correlated with poor prognosis. Our findings suggest that cell-migration and proliferation levels can predict patient-specific clinical outcomes.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Glioblastoma , Técnicas Analíticas Microfluídicas , Supervivencia sin Progresión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Persona de Mediana Edad , Pronóstico , ARN/análisis , ARN/genética , ARN/metabolismo , Estudios Retrospectivos , Transcriptoma/genética , Células Tumorales Cultivadas , Adulto Joven
3.
Cancer Res ; 79(11): 2878-2891, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30975647

RESUMEN

The sialoglycoprotein podocalyxin is absent in normal pancreas but is overexpressed in pancreatic cancer and is associated with poor clinical outcome. Here, we investigate the role of podocalyxin in migration and metastasis of pancreatic adenocarcinomas using SW1990 and Pa03c as cell models. Although ezrin is regarded as a cytoplasmic binding partner of podocalyxin that regulates actin polymerization via Rac1 or RhoA, we did not detect podocalyxin-ezrin association in pancreatic cancer cells. Moreover, depletion of podocalyxin did not alter actin dynamics or modulate Rac1 and RhoA activities in pancreatic cancer cells. Using mass spectrometry, bioinformatics analysis, coimmunoprecipitation, and pull-down assays, we discovered a novel, direct binding interaction between the cytoplasmic tail of podocalyxin and the large GTPase dynamin-2 at its GTPase, middle, and pleckstrin homology domains. This podocalyxin-dynamin-2 interaction regulated microtubule growth rate, which in turn modulated focal adhesion dynamics and ultimately promoted efficient pancreatic cancer cell migration via microtubule- and Src-dependent pathways. Depletion of podocalyxin in a hemispleen mouse model of pancreatic cancer diminished liver metastasis without altering primary tumor size. Collectively, these findings reveal a novel mechanism by which podocalyxin facilitates pancreatic cancer cell migration and metastasis. SIGNIFICANCE: These findings reveal that a novel interaction between podocalyxin and dynamin-2 promotes migration and metastasis of pancreatic cancer cells by regulating microtubule and focal adhesion dynamics.


Asunto(s)
Dinamina II/metabolismo , Neoplasias Pancreáticas/patología , Sialoglicoproteínas/metabolismo , Animales , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular , Citoesqueleto/metabolismo , Citoesqueleto/patología , Dinamina II/genética , Femenino , Humanos , Neoplasias Hepáticas/secundario , Ratones SCID , Microtúbulos/genética , Microtúbulos/metabolismo , Neoplasias Pancreáticas/metabolismo , Sialoglicoproteínas/genética , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/metabolismo
4.
Oncotarget ; 8(33): 54004-54020, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903319

RESUMEN

Obscurins are a family of RhoGEF-containing proteins with tumor and metastasis suppressing roles in breast epithelium. Downregulation of giant obscurins in normal breast epithelial cells leads to reduced levels of active RhoA and of its downstream effectors. Herein, we elucidate how depletion of giant obscurins affects the response of breast epithelial cells to changes in the mechanical properties of the microenvironment. We find that knockdown of obscurins increases cell morphodynamics, migration speed, and diffusivity on polyacrylamide gels of ≥ 1 kPa, presumably by decreasing focal adhesion area and density as well as cell traction forces. Depletion of obscurins also increases cell mechanosensitivity on soft (0.4-4 kPa) surfaces. Similar to downregulation of obscurins, pharmacological inhibition of Rho kinase in breast epithelial cells increases migration and morphodynamics, suggesting that suppression of Rho kinase activity following obscurin knockdown can account for alterations in morphodynamics and migration. In contrast, inhibition of myosin light chain kinase reduces morphodynamics and migration, suggesting that temporal changes in cell shape are required for efficient migration. Collectively, downregulation of giant obscurins facilitates cell migration through heterogeneous microenvironments of varying stiffness by altering cell mechanobiology.

5.
Cell Rep ; 15(7): 1430-1441, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27160899

RESUMEN

Cells adopt distinct signaling pathways to optimize cell locomotion in different physical microenvironments. However, the underlying mechanism that enables cells to sense and respond to physical confinement is unknown. Using microfabricated devices and substrate-printing methods along with FRET-based biosensors, we report that, as cells transition from unconfined to confined spaces, intracellular Ca(2+) level is increased, leading to phosphodiesterase 1 (PDE1)-dependent suppression of PKA activity. This Ca(2+) elevation requires Piezo1, a stretch-activated cation channel. Moreover, differential regulation of PKA and cell stiffness in unconfined versus confined cells is abrogated by dual, but not individual, inhibition of Piezo1 and myosin II, indicating that these proteins can independently mediate confinement sensing. Signals activated by Piezo1 and myosin II in response to confinement both feed into a signaling circuit that optimizes cell motility. This study provides a mechanism by which confinement-induced signaling enables cells to sense and adapt to different physical microenvironments.


Asunto(s)
Movimiento Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Canales Iónicos/metabolismo , Miosina Tipo II/metabolismo , Transducción de Señal , Animales , Células CHO , Calcio/metabolismo , Calcio/farmacología , Línea Celular Tumoral , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Espacio Intracelular/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Melanoma/metabolismo , Melanoma/patología
6.
Oncotarget ; 7(6): 6994-7011, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26515603

RESUMEN

How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via ß1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of ß1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.


Asunto(s)
Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula/métodos , Forma de la Célula/fisiología , Matriz Extracelular/química , Fibroblastos/citología , Fibrosarcoma/patología , Comunicación Celular , División Celular , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Femenino , Humanos , Integrina beta1/metabolismo , Microfluídica , Microscopía Fluorescente
7.
Biomaterials ; 35(2): 748-59, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24140044

RESUMEN

Among the arsenal of nano-materials, carbon nanotubes (CNTs) are becoming more prominent due to favorable attributes including their unique shape, which promotes cellular-uptake, and large aspect-ratio that facilitates functionalization of bioactive molecules on their surface. In this study, multi-walled carbon nanotubes (MWCNTs) were functionalized with either mitochondrial-targeting fluorescent rhodamine-110 (MWCNT-Rho) or non-targeting fluorescein (MWCNT-Fluo). Despite structural similarities, MWCNT-Rho associated well with mitochondria (ca. 80% co-localization) in contrast to MWCNT-Fluo, which was poorly localized (ca. 21% co-localization). Additionally, MWCNT-Rho entrapping platinum(IV) pro-drug of cisplatin (PtBz) displayed enhanced potency (IC50 = 0.34 ± 0.07 µM) compared to a construct based on MWCNT-Fluo (IC50 ≥ 2.64 µM). Concurrently, preliminary in vitro toxicity evaluation revealed that empty MWCNT-Rho neither decreased cell viability significantly nor interfered with mitochondrial membrane-potential, while seemingly being partially expelled from cells. Due to its targeting capability and apparent lack of cytotoxicity, MWCNT-Rho complex was used to co-encapsulate PtBz and a chemo-potentiator, 3-bromopyruvate (BP), and the resulting MWCNT-Rho(PtBz+BP) construct demonstrated superior efficacy over PtBz free drug in several cancer cell lines tested. Importantly, a 2-fold decrease in mitochondrial potential was observed, implying that mitochondrial targeting of compounds indeed incurred additional intended damage to mitochondria.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Mitocondrias/efectos de los fármacos , Nanotubos de Carbono/química , Platino (Metal)/química , Profármacos/farmacología , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Citometría de Flujo , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Piruvatos/farmacología , Rodaminas/farmacología
8.
Adv Drug Deliv Rev ; 65(15): 1964-2015, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23954402

RESUMEN

In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Nanotubos de Carbono/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Portadores de Fármacos/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA