Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35683725

RESUMEN

Silicon carbide (SiC) is recognized as excellent material for high power/temperature applications with a wide-band gap semiconductor. With different structures at the nanosize scale, SiC nanomaterials offer outstanding mechanical, physical, and chemical properties leading to a variety of applications. In this work, new 3D pillared SiC nanostructures have been designed and investigated based on self-consistent charge density functional tight-binding (SCC-DFTB) including Van der Waals dispersion corrections. The structural and electronic properties of 3D pillared SiC nanostructures with effects of diameters and pillar lengths have been studied and compared with 3D pillared graphene nanostructures. The permeability of small gas molecules including H2O, CO2, N2, NO, O2, and NO2 have been demonstrated with different orientations into the 3D pillared SiC nanostructures. The promising candidate of 3D pillared SiC nanostructures for gas molecule separation application at room temperature is highlighted.

2.
J Phys Condens Matter ; 33(30)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-33794513

RESUMEN

Gas sensor technology is widely utilized in various areas ranging from home security, environment and air pollution, to industrial production. It also hold great promise in non-invasive exhaled breath detection and an essential device in future internet of things. The past decade has witnessed giant advance in both fundamental research and industrial development of gas sensors, yet current efforts are being explored to achieve better selectivity, higher sensitivity and lower power consumption. The sensing layer in gas sensors have attracted dominant attention in the past research. In addition to the conventional metal oxide semiconductors, emerging nanocomposites and graphene-like two-dimensional materials also have drawn considerable research interest. This inspires us to organize this comprehensive 2020 gas sensing materials roadmap to discuss the current status, state-of-the-art progress, and present and future challenges in various materials that is potentially useful for gas sensors.

3.
ACS Omega ; 4(16): 16916-16924, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31646238

RESUMEN

Resistive-based gas sensors have been considered as the most favorable gas sensors for detection of toxic gases and volatile organic compounds (VOCs) because of their simple structure, low cost, high sensitivity, ease of use, and high stability. Unfortunately, wide application of resistive-based gas sensors is limited by their low selectivity. In this article, we present the fabrication of ultrahigh selective NH3 gas sensor based on tin-titanium dioxide/reduced graphene/carbon nanotube (Sn-TiO2@rGO/CNT) nanocomposites. The Sn-TiO2@rGO/CNT nanocomposites with different molar ratios of Sn/Ti (1:10, 3:10, and 5:10) were synthesized via the solvothermal method. Characterizations by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy confirmed the decoration of Sn-TiO2 nanoparticles on rGO/CNT nanocomposite surfaces. The Sn-TiO2@rGO/CNT nanocomposite gas sensor exhibited high response and ultrahigh selectivity to NH3 against toluene, dimethylformamide, acetone, ethanol, methanol, isopropanol, formaldehyde, hydrogen, carbon dioxide, acetylene, and VOCs in paint thinners at room temperature. The Sn-TiO2@rGO/CNT nanocomposite gas sensor with molar ratio of Sn/Ti = 1:10 showed the highest response to NH3 over other molar ratios of Sn/Ti as well as pure rGO/CNT and Sn-TiO2 gas sensors. The ammonia-sensing mechanisms of the Sn-TiO2@rGO/CNT gas sensor were proposed based on the formation of p-n heterojunctions of p-type rGO/CNT and n-type Sn-TiO2 nanoparticles via a low-temperature oxidizing reaction process.

4.
Nanoscale Res Lett ; 12(1): 90, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28168613

RESUMEN

Geometric and electronic properties of 3,4-ethylenedioxythiophene (EDOT), styrene sulfonate (SS), and EDOT: SS oligomers up to 10 repeating units were studied by the self-consistent charge density functional tight-binding (SCC-DFTB) method. An application of PEDOT:PSS for ammonia (NH3) detection was highlighted and investigated both experimentally and theoretically. The results showed an important role of H-bonds in EDOT:SS oligomers complex conformation. Electrical conductivity of EDOT increased with increasing oligomers and doping SS due to enhancement of π conjugation. Printed PEDOT:PSS gas sensor exhibited relatively high response and selectivity to NH3. The SCC-DFTB calculation suggested domination of direct charge transfer process in changing of PEDOT:PSS conductivity upon NH3 exposure at room temperature. The NH3 molecules preferred to bind with PEDOT:PSS via physisorption. The most favorable adsorption site for PEDOT:PSS-NH3 interaction was found to be at the nitrogen atom of NH3 and hydrogen atoms of SS with an average optimal binding distance of 2.00 Å.

5.
Sensors (Basel) ; 10(8): 7705-15, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22163623

RESUMEN

In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT)-doped tungsten oxide (WO(3)) thin films by means of the powder mixing and electron beam (E-beam) evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO(3) thin film exhibits high sensitivity and selectivity to hydrogen. Thus, MWCNT doping based on E-beam co-evaporation was shown to be an effective means of preparing hydrogen gas sensors with enhanced sensing and reduced operating temperatures. Creation of nanochannels and formation of p-n heterojunctions were proposed as the sensing mechanism underlying the enhanced hydrogen sensitivity of this hybridized gas sensor. To our best knowledge, this is the first report on a MWCNT-doped WO(3) hydrogen sensor prepared by the E-beam method.


Asunto(s)
Gases/análisis , Hidrógeno/análisis , Nanotecnología/métodos , Nanotubos de Carbono/química , Óxidos/química , Reproducibilidad de los Resultados , Temperatura , Tungsteno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA