Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancer Res Commun ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984891

RESUMEN

Chromobox 2 (CBX2), an epigenetic reader and component of Polycomb Repressor Complex 1 (PRC1), is highly expressed in >75% of high-grade serous carcinoma (HGSC). Increased CBX2 expression is associated with poorer survival, while CBX2 knockdown leads to improved chemotherapy sensitivity. In an HGSC immune competent murine model, knockdown of CBX2 decreased tumor progression. We sought to explore the impact of modulation of CBX2 on the tumor immune microenvironment (TIME), understanding that the TIME plays a critical role in disease progression and development of therapy resistance. Exploration of existing datasets demonstrated that elevated CBX2 expression significantly correlated with the specific immune cell types in the TIME. RNA-seq and pathway analysis of differentially expressed genes demonstrated immune signature enrichment. Confocal microscopy and co-culture experiments found modulation of CBX2 leads to increased recruitment and infiltration of macrophages. Flow cytometry of macrophages cultured with CBX2 overexpressing cells showed increased M2-like macrophages and decreased phagocytosis activity. Cbx2 knockdown in the Trp53, Brca2 null ID8 syngeneic murine model (ID8 Trp53-/- Brca2-/-) led to decreased tumor progression compared to control. NanoString Immuno-Oncology Panel analysis suggested knock down in Cbx2 shifts immune cell composition, with an increase in macrophages. Multispectral immunohistochemistry further confirmed an increase in macrophage infiltration. Increased CBX2 expression leads to recruitment and polarization of pro-tumor macrophages and targeting CBX2 may serve to modulate the TIME to enhance the efficacy of immune therapies.

2.
Cancer Res Commun ; 4(7): 1625-1642, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867360

RESUMEN

Genome instability is a hallmark of cancer crucial for tumor heterogeneity and is often a result of defects in cell division and DNA damage repair. Tumors tolerate genomic instability, but the accumulation of genetic aberrations is regulated to avoid catastrophic chromosomal alterations and cell death. In ovarian cancer tumors, claudin-4 is frequently upregulated and closely associated with genome instability and worse patient outcomes. However, its biological association with regulating genomic instability is poorly understood. Here, we used CRISPR interference and a claudin mimic peptide to modulate the claudin-4 expression and its function in vitro and in vivo. We found that claudin-4 promotes a tolerance mechanism for genomic instability through micronuclei generation in tumor cells. Disruption of claudin-4 increased autophagy and was associated with the engulfment of cytoplasm-localized DNA. Mechanistically, we observed that claudin-4 establishes a biological axis with the amino acid transporters SLC1A5 and LAT1, which regulate autophagy upstream of mTOR. Furthermore, the claudin-4/SLC1A5/LAT1 axis was linked to the transport of amino acids across the plasma membrane as one of the potential cellular processes that significantly decreased survival in ovarian cancer patients. Together, our results show that the upregulation of claudin-4 contributes to increasing the threshold of tolerance for genomic instability in ovarian tumor cells by limiting its accumulation through autophagy. SIGNIFICANCE: Autophagy regulation via claudin-4/SLC1A5/LAT1 has the potential to be a targetable mechanism to interfere with genomic instability in ovarian tumor cells.


Asunto(s)
Autofagia , Claudina-4 , Inestabilidad Genómica , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Claudina-4/metabolismo , Claudina-4/genética , Animales , Ratones , Línea Celular Tumoral , Micronúcleos con Defecto Cromosómico , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad Menor , Sistema de Transporte de Aminoácidos ASC
3.
Mol Cancer Ther ; : OF1-OF16, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38863225

RESUMEN

Despite the success of poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory double-stranded RNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T-cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi-resistant ovarian tumor growth in vivo, and promotes antitumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.

4.
Mol Cancer Ther ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714351

RESUMEN

Despite the success of Poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers Euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory dsRNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi resistant ovarian tumor growth in vivo, and promotes anti-tumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.

5.
Cancer Res Commun ; 4(3): 822-833, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38451784

RESUMEN

High-grade serous carcinoma (HGSC) of the fallopian tube, ovary, and peritoneum is the most common type of ovarian cancer and is predicted to be immunogenic because the presence of tumor-infiltrating lymphocytes conveys a better prognosis. However, the efficacy of immunotherapies has been limited because of the immune-suppressed tumor microenvironment (TME). Tumor metabolism and immune-suppressive metabolites directly affect immune cell function through the depletion of nutrients and activation of immune-suppressive transcriptional programs. Tryptophan (TRP) catabolism is a contributor to HGSC disease progression. Two structurally distinct rate-limiting TRP catabolizing enzymes, indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2), evolved separately to catabolize TRP. IDO1/TDO2 are aberrantly expressed in carcinomas and metabolize TRP into the immune-suppressive metabolite kynurenine (KYN), which can engage the aryl hydrocarbon receptor to drive immunosuppressive transcriptional programs. To date, IDO inhibitors tested in clinical trials have had limited efficacy, but those inhibitors did not target TDO2, and we find that HGSC cell lines and clinical outcomes are more dependent on TDO2 than IDO1. To identify inflammatory HGSC cancers with poor prognosis, we stratified patient ascites samples by IL6 status, which correlates with poor prognosis. Metabolomics revealed that IL6-high patient samples had enriched KYN. TDO2 knockdown significantly inhibited HGSC growth and TRP catabolism. The orally available dual IDO1/TDO2 inhibitor, AT-0174, significantly inhibited tumor progression, reduced tumor-associated macrophages, and reduced expression of immune-suppressive proteins on immune and tumor cells. These studies demonstrate the importance of TDO2 and the therapeutic potential of AT-0174 to overcome an immune-suppressed TME. SIGNIFICANCE: Developing strategies to improve response to chemotherapy is essential to extending disease-free intervals for patients with HGSC of the fallopian tube, ovary, and peritoneum. In this article, we demonstrate that targeting TRP catabolism, particularly with dual inhibition of TDO2 and IDO1, attenuates the immune-suppressive microenvironment and, when combined with chemotherapy, extends survival compared with chemotherapy alone.


Asunto(s)
Neoplasias Ováricas , Triptófano Oxigenasa , Femenino , Humanos , Triptófano Oxigenasa/genética , Triptófano/metabolismo , Antígeno B7-H1 , Interleucina-6 , Quinurenina/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Macrófagos/metabolismo , Microambiente Tumoral
6.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38293054

RESUMEN

Genome instability is key for tumor heterogeneity and derives from defects in cell division and DNA damage repair. Tumors show tolerance for this characteristic, but its accumulation is regulated somehow to avoid catastrophic chromosomal alterations and cell death. Claudin-4 is upregulated and closely associated with genome instability and worse patient outcome in ovarian cancer. This protein is commonly described as a junctional protein participating in processes such as cell proliferation and DNA repair. However, its biological association with genomic instability is still poorly-understood. Here, we used CRISPRi and a claudin mimic peptide (CMP) to modulate the cladudin-4 expression and its function, respectively in in-vitro (high-grade serous carcinoma cells) and in-vivo (patient-derived xenograft in a humanized-mice model) systems. We found that claudin-4 promotes a protective cellular-mechanism that links cell-cell junctions to genome integrity. Disruption of this axis leads to irregular cellular connections and cell cycle that results in chromosomal alterations, a phenomenon associated with a novel functional link between claudin-4 and SLC1A5/LAT1 in regulating autophagy. Consequently, claudin-4's disruption increased autophagy and associated with engulfment of cytoplasm-localized DNA. Furthermore, the claudin-4/SLC1A5/LAT1 biological axis correlates with decrease ovarian cancer patient survival and targeting claudin-4 in-vivo with CMP resulted in increased niraparib (PARPi) efficacy, correlating with increased tumoral infiltration of T CD8+ lymphocytes. Our results show that the upregulation of claudin-4 enables a mechanism that promotes tolerance to genomic instability and immune evasion in ovarian cancer; thus, suggesting the potential of claudin-4 as a translational target for enhancing ovarian cancer treatment.

7.
Obstet Gynecol ; 143(3): e63-e77, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176019

RESUMEN

OBJECTIVE: To determine biomarkers other than CA 125 that could be used in identifying early-stage ovarian cancer. DATA SOURCES: Ovid MEDLINE ALL, EMBASE, Web of Science Core Collection, ScienceDirect, Clinicaltrials.gov , and CAB Direct were searched for English-language studies between January 2008 and April 2023 for the concepts of high-grade serous ovarian cancer, testing, and prevention or early diagnosis. METHODS OF STUDY SELECTION: The 5,523 related articles were uploaded to Covidence. Screening by two independent reviewers of the article abstracts led to the identification of 245 peer-reviewed primary research articles for full-text review. Full-text review by those reviewers led to the identification of 131 peer-reviewed primary research articles used for this review. TABULATION, INTEGRATION, AND RESULTS: Of 131 studies, only 55 reported sensitivity, specificity, or area under the curve (AUC), with 36 of the studies reporting at least one biomarker with a specificity of 80% or greater specificity or 0.9 or greater AUC. CONCLUSION: These findings suggest that although many types of biomarkers are being tested in ovarian cancer, most have similar or worse detection rates compared with CA 125 and have the same limitations of poor detection rates in early-stage disease. However, 27.5% of articles (36/131) reported biomarkers with better sensitivity and an AUC greater than 0.9 compared with CA 125 alone and deserve further exploration.


Asunto(s)
Trompas Uterinas , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/diagnóstico , Biomarcadores
8.
Cancer Gene Ther ; 31(2): 300-310, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38030811

RESUMEN

Ovarian cancer is the deadliest gynecological malignancy, and accounts for over 150,000 deaths per year worldwide. The high grade serous ovarian carcinoma (HGSC) subtype accounts for almost 70% of ovarian cancers and is the deadliest. HGSC originates in the fimbria of the fallopian tube and disseminates through the peritoneal cavity. HGSC survival in peritoneal fluid requires cells to resist anoikis (anchorage-independent apoptosis). Most anoikis resistant mechanisms are dependent on microenvironment interactions with cell surface-associated proteins, such as integrins and receptor tyrosine kinases (RTKs). We previously identified the gene CASC4 as a driver of anoikis resistance. CASC4 is predicted to be a Golgi-associated protein that may regulate protein trafficking to the plasma membrane, but CASC4 is largely uncharacterized in literature; thus, we sought to determine how CASC4 confers anoikis resistance to HGSC cells. Mining of publicly available ovarian cancer datasets (TCGA) showed that CASC4 is associated with worse overall survival and increased resistance to platinum-based chemotherapies. For experiments, we cultured three human HGSC cell lines (PEO1, CaOV3, OVCAR3), and a murine HGSC cell line, (ID8) with shRNA-mediated CASC4 knockdowns (CASC4 KD) in suspension, to recapitulate the peritoneal fluid environment in vitro. CASC4 KD significantly inhibited cell proliferation and colony formation ability, and increased apoptosis. A Reverse Phase Protein Assay (RPPA) showed that CASC4 KD resulted in a broad re-programming of membrane-associated proteins. Specifically, CASC4 KD led to decreased protein levels of the RTK Epidermal Growth Factor Receptor (EGFR), an initiator of several oncogenic signaling pathways, leading us to hypothesize that CASC4 drives HGSC survival through mediating recycling and trafficking of EGFR. Indeed, loss of CASC4 led to a decrease in both EGFR membrane localization, reduced turnover of EGFR, and increased EGFR ubiquitination. Moreover, a syngeneic ID8 murine model of ovarian cancer showed that knocking down CASC4 leads to decreased tumor burden and dissemination.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Humanos , Femenino , Animales , Ratones , Neoplasias Ováricas/patología , Anoicis/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patología , Línea Celular Tumoral , Receptores ErbB/genética , Factores de Transcripción , Microambiente Tumoral
9.
Expert Opin Ther Targets ; 27(4-5): 361-371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37243607

RESUMEN

BACKGROUND: The Polycomb Repressor Complex 1 (PRC1) is an epigenetic regulator of differentiation and development, consisting of multiple subunits including RING1, BMI1, and Chromobox. The composition of PRC1 dictates its function and aberrant expression of specific subunits contributes to several diseases including cancer. Specifically, the reader protein Chromobox2 (CBX2) recognizes the repressive modifications including histone H3 lysine 27 tri-methylation (H3K27me3) and H3 lysine 9 dimethylation (H3K9me2). CBX2 is overexpressed in several cancers compared to the non-transformed cell counterparts, it promotes both cancer progression and chemotherapy resistance. Thus, inhibiting the reader function of CBX2 is an attractive and unique anti-cancer approach. RESEARCH DESIGN & METHODS: Compared with other CBX family members, CBX2 has a unique A/T-hook DNA binding domain that is juxtaposed to the chromodomain (CD). Using a computational approach, we constructed a homology model of CBX2 encompassing the CD and A/T hook domain. We used the model as a basis for peptide design and identified blocking peptides that are predicted to directly bind the CD and A/T-hook regions of CBX2. These peptides were tested in vitro and in vivo models. CONCLUSION: The CBX2 blocking peptide significantly inhibited both 2D and 3D growth of ovarian cancer cells, downregulated a CBX2 target gene, and blunted tumor growth in vivo.


Asunto(s)
Neoplasias , Complejo Represivo Polycomb 1 , Humanos , Complejo Represivo Polycomb 1/metabolismo , Lisina , Proteínas del Grupo Polycomb , Péptidos
10.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865165

RESUMEN

Euchromatic histone lysine methyltransferases 1 and 2 (EHMT1/2), which catalyze demethylation of histone H3 lysine 9 (H3K9me2), contribute to tumorigenesis and therapy resistance through unknown mechanisms of action. In ovarian cancer, EHMT1/2 and H3K9me2 are directly linked to acquired resistance to poly-ADP-ribose polymerase (PARP) inhibitors and are correlated with poor clinical outcomes. Using a combination of experimental and bioinformatic analyses in several PARP inhibitor resistant ovarian cancer models, we demonstrate that combinatory inhibition of EHMT and PARP is effective in treating PARP inhibitor resistant ovarian cancers. Our in vitro studies show that combinatory therapy reactivates transposable elements, increases immunostimulatory dsRNA formation, and elicits several immune signaling pathways. Our in vivo studies show that both single inhibition of EHMT and combinatory inhibition of EHMT and PARP reduces tumor burden, and that this reduction is dependent on CD8 T cells. Together, our results uncover a direct mechanism by which EHMT inhibition helps to overcome PARP inhibitor resistance and shows how an epigenetic therapy can be used to enhance anti-tumor immunity and address therapy resistance.

11.
Mol Cancer Ther ; 21(8): 1285-1295, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35587258

RESUMEN

Identifying novel, durable treatments for high-grade serous ovarian cancer (HGSOC) is paramount to extend both progression-free survival (PFS) and overall survival (OS) in patients afflicted with this disease. Dual-specificity phosphatase 1 (DUSP1) was identified as one of seven genes that may significantly affect prognosis in patients with HGSOC; however, the role of DUSP inhibition (DUSPi) in the treatment of HGSOC remains largely unknown. In this study, we show that DUSP1 is highly expressed in HGSOC and confers worse PFS and OS. Further, we corroborate data that show DUSP1 expression is directly associated with therapy resistance. Using a tissue microarray of 137 different serous ovarian carcinomas, we demonstrate the high expression of DUSP1 in primary and recurrent serous ovarian cancer. In both acquired and de novo therapy HGSOC-resistant models, DUSPi both inhibited cellular proliferation and promoted cell death. RPPA analysis of HGSOC cells revealed DUSPi led to the differential regulation of several pathways, including AMPK and mTORC. Further, in a patient-derived xenograft HGSOC model, DUSPi significantly inhibited tumor progression.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Carcinoma Epitelial de Ovario , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Femenino , Humanos , Recurrencia Local de Neoplasia/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Pronóstico
12.
Mol Cancer Ther ; 21(4): 647-657, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35373300

RESUMEN

High-grade serous ovarian cancer is the deadliest gynecologic malignancy due to progression to resistant disease. Claudin-4 is classically defined as a tight junction protein and is often associated with epithelial cancers. Claudin-4 is aberrantly expressed in nearly 70% of all ovarian cancer tumors and conveys a worse overall prognosis. Elevated claudin-4 expression correlates to increased DNA repair activity and resistance to DNA damaging agents. PARP inhibitors are emerging as an effective therapeutic option for patients with ovarian cancer and function by promoting DNA damage. The study examines the relationship between claudin-4 expression and the response to PARP inhibitors using both genetic and pharmacologic inhibition of claudin-4 in in vitro and ex vivo models of ovarian cancer to examine DNA repair markers and functional activity. Genetic inhibition of claudin-4 results in the downregulation of several DNA damage repair effectors, including 53BP1 and XRCC1. Claudin-4 knockdown did not change homology-directed repair but inhibited nonhomologous end-joining and reduced 53BP1 foci formation. In 15 primary ovarian cancer tumors, higher claudin-4 expression significantly correlated to a dampened PARP inhibitor-mediated antiproliferation response. Further, claudin-4 inhibition in high claudin-4 tumors sensitized tumor sections to PARP inhibition. These data highlight that claudin-4 expression in ovarian cancer tumors could serve as both a marker of PARP inhibitor response and a therapeutic target to improve PARP inhibitor response.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Claudina-4/genética , Daño del ADN , Reparación del ADN , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética
13.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560059

RESUMEN

Gynecologic malignancies, including ovarian cancer, endometrial cancer, and cervical cancer, affect hundreds of thousands of women worldwide every year. Wnt signaling, specifically Wnt/ß-catenin signaling, has been found to play an essential role in many oncogenic processes in gynecologic malignancies, including tumorigenesis, metastasis, recurrence, and chemotherapy resistance. As such, the Wnt/ß-catenin signaling pathway has the potential to be a target for effective treatment, improving patient outcomes. In this review, we discuss the evidence supporting the importance of the Wnt signaling pathways in the development, progression, and treatment of gynecologic malignancies.


Asunto(s)
Neoplasias Endometriales/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Vía de Señalización Wnt , Antineoplásicos/uso terapéutico , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia
14.
Stress ; 21(1): 69-83, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29165002

RESUMEN

Oscillating clock gene expression gives rise to a molecular clock that is present not only in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), but also in extra-SCN brain regions. These extra-SCN molecular clocks depend on the SCN for entrainment to a light:dark cycle. The SCN has limited neural efferents, so it may entrain extra-SCN molecular clocks through its well-established circadian control of glucocorticoid hormone secretion. Glucocorticoids can regulate the normal rhythmic expression of clock genes in some extra-SCN tissues. Untimely stress-induced glucocorticoid secretion may compromise extra-SCN molecular clock function. We examined whether acute restraint stress during the rat's inactive phase can rapidly (within 30 min) alter clock gene (Per1, Per2, Bmal1) and cFos mRNA (in situ hybridization) in the SCN, hypothalamic paraventricular nucleus (PVN), and prefrontal cortex (PFC) of male and female rats (6 rats per treatment group). Restraint stress increased Per1 and cFos mRNA in the PVN and PFC of both sexes. Stress also increased cFos mRNA in the SCN of male rats, but not when subsequently tested during their active phase. We also examined in male rats whether endogenous glucocorticoids are necessary for stress-induced Per1 mRNA (6-7 rats per treatment group). Adrenalectomy attenuated stress-induced Per1 mRNA in the PVN and ventral orbital cortex, but not in the medial PFC. These data indicate that increased Per1 mRNA may be a means by which extra-SCN molecular clocks adapt to environmental stimuli (e.g. stress), and in the PFC this effect is largely independent of glucocorticoids.


Asunto(s)
Factores de Transcripción ARNTL/genética , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Circadianas Period/genética , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , ARN Mensajero/metabolismo , Estrés Psicológico/genética , Glándulas Suprarrenales/metabolismo , Adrenalectomía , Animales , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Ritmo Circadiano/fisiología , Corticosterona/metabolismo , Femenino , Glucocorticoides/metabolismo , Hibridación in Situ , Masculino , Actividad Motora , Ratas , Restricción Física , Núcleo Supraquiasmático/metabolismo
15.
Brain Res ; 1672: 113-121, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28764933

RESUMEN

Sex differences in the expression of social behavior are typically apparent in adolescent and adult rats. While the neurobiology underlying juvenile social play behavior has been well characterized, less is known about discrete brain regions involved in adult responsiveness to a same sex peer. Furthermore, whether adult males and females differ in their responsiveness to a social interaction in terms of neuronal activation indexed via immediate early gene (IEG) expression remains to be determined. Thus, the present study was designed to identify key sites relevant to the processing of sensory stimuli (generally) or social stimuli (specifically) after brief exposure to a same-sex social partner by assessing IEG expression. Four-month-old male and female Fisher (F) 344 rats (N=38; n=5-8/group) were either left undisturbed in their home cage as controls (HCC), exposed to a testing context alone for 30min (CXT), or were placed in the context for 20min and then allowed to socially interact (SI) with a sex-matched conspecific for 10min. Females demonstrated greater levels of social behavior, relative to males. Analysis of c-Fos induction revealed that females exhibited greater c-Fos expression in the prefrontal cortex, regardless of condition. In many brain regions, induction was similar in the CXT and SI groups. However, in the bed nucleus of the stria terminalis (BNST), females exhibited greater c-Fos induction in response to the social interaction relative to their male counterparts, indicating a sex difference in responsivity to social stimuli. Taken together, these data suggest that the BNST is a sexually dimorphic region in terms of activation in response to social stimuli.


Asunto(s)
Proteínas Proto-Oncogénicas c-fos/biosíntesis , Núcleos Septales/fisiología , Conducta Sexual Animal/fisiología , Animales , Femenino , Expresión Génica , Genes fos , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Endogámicas F344 , Núcleos Septales/metabolismo , Factores Sexuales
16.
Endocrinology ; 157(4): 1522-34, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26901093

RESUMEN

Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation.


Asunto(s)
Factores de Transcripción ARNTL/genética , Ritmo Circadiano , Corticosterona/metabolismo , Proteínas Circadianas Period/genética , Corteza Prefrontal/metabolismo , Adrenalectomía , Animales , Corticosterona/farmacología , Perfilación de la Expresión Génica , Hibridación in Situ , Masculino , Corteza Prefrontal/efectos de los fármacos , Ratas Sprague-Dawley , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/metabolismo
17.
Behav Brain Res ; 286: 249-55, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25746455

RESUMEN

Post traumatic stress disorder (PTSD) is associated with altered conditioned fear extinction expression and impaired circadian function including dysregulation of glucocorticoid hormone secretion. We examined in adult male rats the relationship between conditioned fear extinction learning, circadian phase, and endogenous glucocorticoids (CORT). Rats maintained on a 12h light:dark cycle were trained and tested across 3 separate daily sessions (conditioned fear acquisition and 2 extinction sessions) that were administered during either the rats' active or inactive circadian phase. In an initial experiment we found that rats at both circadian phases acquired and extinguished auditory cue conditioned fear to a similar degree in the first extinction session. However, rats trained and tested at zeitgeber time-16 (ZT16) (active phase) showed enhanced extinction memory expression during the second extinction session compared to rats trained and tested at ZT4 (inactive phase). In a follow-up experiment, adrenalectomized (ADX) or sham surgery rats were similarly trained and tested across 3 separate daily sessions at either ZT4 or ZT16. ADX had no effect on conditioned fear acquisition or conditioned fear memory. Sham ADX rats trained and tested at ZT16 exhibited better extinction learning across the two extinction sessions compared to all other groups of rats. These results indicate that conditioned fear extinction learning is modulated by time of day, and this diurnal modulation requires the presence of adrenal hormones. These results support an important role of CORT-dependent circadian processes in regulating conditioned fear extinction learning, which may be capitalized upon to optimize effective treatment of PTSD.


Asunto(s)
Glándulas Suprarrenales/fisiología , Ritmo Circadiano/fisiología , Condicionamiento Psicológico/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Glucocorticoides/metabolismo , Estimulación Acústica , Adrenalectomía , Animales , Percepción Auditiva/fisiología , Señales (Psicología) , Reacción Cataléptica de Congelación/fisiología , Masculino , Fotoperiodo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA