Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
2.
Adv Sci (Weinh) ; 11(17): e2302872, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38445882

RESUMEN

Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Sistemas de Liberación de Medicamentos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Verteporfina , Animales , Fotoquimioterapia/métodos , Verteporfina/farmacología , Verteporfina/uso terapéutico , Ratones , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Nanopartículas/química , Modelos Animales de Enfermedad , Humanos , Ratas , Liposomas , Línea Celular Tumoral , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
3.
Radiat Oncol ; 19(1): 36, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481255

RESUMEN

PURPOSE/OBJECTIVE(S): Treatment related lymphopenia is a known toxicity for glioblastoma (GBM) patients and several single-institution studies have linked lymphopenia with poor survival outcomes. We performed a systematic review and pooled analysis to evaluate the association between lymphopenia and overall survival (OS) for GBM patients undergoing chemotherapy and radiation therapy (RT). MATERIALS/METHODS: Following PRISMA guidelines, a systematic literature review of the MEDLINE database and abstracts from ASTRO, ASCO, and SNO annual meetings was conducted. A pooled analysis was performed using inverse variance-weighted random effects to generate a pooled estimate of the hazard ratio of association between lymphopenia and OS. RESULTS: Ten of 104 identified studies met inclusion criteria, representing 1,718 patients. The lymphopenia cutoff value varied (400-1100 cells/uL) and as well as the timing of its onset. Studies were grouped as time-point (i.e., lymphopenia at approximately 2-months post-RT) or time-range (any lymphopenia occurrence from treatment-start to approximately 2-months post-RT. The mean overall pooled incidence of lymphopenia for all studies was 31.8%, and 11.8% vs. 39.9% for time-point vs. time-range studies, respectively. Lymphopenia was associated with increased risk of death, with a pooled HR of 1.78 (95% CI 1.46-2.17, P < 0.00001) for the time-point studies, and a pooled HR of 1.38 (95% CI 1.24-1.55, P < 0.00001) for the time-point studies. There was no significant heterogeneity between studies. CONCLUSION: These results strengthen observations from previous individual single-institution studies and better defines the magnitude of the association between lymphopenia with OS in GBM patients, highlighting lymphopenia as a poor prognostic factor.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Linfopenia , Humanos , Temozolomida/uso terapéutico , Neoplasias Encefálicas/radioterapia , Linfopenia/etiología
4.
Int J Radiat Oncol Biol Phys ; 118(3): 650-661, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717787

RESUMEN

PURPOSE: Preoperative stereotactic radiosurgery (SRS) is a feasible alternative to postoperative SRS for resected brain metastases (BM). Most reported studies of preoperative SRS used single-fraction SRS (SF-SRS). The goal of this study was to compare outcomes and toxicity of preoperative SF-SRS with multifraction (3-5 fractions) SRS (MF-SRS) in a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). METHODS AND MATERIALS: Patients with BM from solid cancers, of which at least 1 lesion was treated with preoperative SRS followed by planned resection, were included from 8 institutions. SRS to synchronous intact BM was allowed. Exclusion criteria included prior or planned whole brain radiation therapy. Intracranial outcomes were estimated using cumulative incidence with competing risk of death. Propensity score matched (PSM) analyses were performed. RESULTS: The study cohort included 404 patients with 416 resected index lesions, of which SF-SRS and MF-SRS were used for 317 (78.5%) and 87 patients (21.5%), respectively. Median dose was 15 Gy in 1 fraction for SF-SRS and 24 Gy in 3 fractions for MF-SRS. Univariable analysis demonstrated that SF-SRS was associated with higher cavity local recurrence (LR) compared with MF-SRS (2-year: 16.3% vs 2.9%; P = .004), which was also demonstrated in multivariable analysis. PSM yielded 81 matched pairs (n = 162). PSM analysis also demonstrated significantly higher rate of cavity LR with SF-SRS (2-year: 19.8% vs 3.3%; P = .003). There was no difference in adverse radiation effect, meningeal disease, or overall survival between cohorts in either analysis. CONCLUSIONS: Preoperative MF-SRS was associated with significantly reduced risk of cavity LR in both the unmatched and PSM analyses. There was no difference in adverse radiation effect, meningeal disease, or overall survival based on fractionation. MF-SRS may be a preferred option for neoadjuvant radiation therapy of resected BMs. Additional confirmatory studies are needed. A phase 3 randomized trial of single-fraction preoperative versus postoperative SRS (NRG-BN012) is ongoing (NCT05438212).


Asunto(s)
Neoplasias Encefálicas , Traumatismos por Radiación , Radiocirugia , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Estudios de Cohortes , Fraccionamiento de la Dosis de Radiación , Traumatismos por Radiación/etiología , Radiocirugia/efectos adversos , Radiocirugia/métodos , Estudios Retrospectivos , Resultado del Tratamiento , Ensayos Clínicos Fase III como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
ACS Nano ; 17(20): 19667-19684, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37812740

RESUMEN

The TWEAK receptor, Fn14, is a promising candidate for active targeting of cancer nanotherapeutics to many solid tumor types, including metastatic breast and primary brain cancers. Targeting of therapeutic nanoparticles (NPs) has been accomplished using a range of targeting moieties including monoclonal antibodies and related fragments, peptides, and small molecules. Here, we investigated a full-length Fn14-specific monoclonal antibody, ITEM4, or an ITEM4-Fab fragment as a targeting moiety to guide the development of a clinical formulation. We formulated NPs with varying densities of the targeting moieties while maintaining the decreased nonspecific adhesivity with receptor targeting (DART) characteristics. To model the conditions that NPs experience following intravenous infusion, we investigated the impact of serum exposure in relation to the targeting moiety type and surface density. To further evaluate performance at the cancer cell level, we performed experiments to assess differences in cellular uptake and trafficking in several cancer cell lines using confocal microscopy, imaging flow cytometry, and total internal reflection fluorescence microscopy. We observed that Fn14-targeted NPs exhibit enhanced cellular uptake in Fn14-high compared to Fn14-low cancer cells and that in both cell lines uptake levels were greater than observed with control, nontargeted NPs. We found that serum exposure increased Fn14-targeted NP specificity while simultaneously reducing the total NP uptake. Importantly, serum exposure caused a larger reduction in cancer cell uptake over time when the targeting moiety was an antibody fragment (Fab region of the monoclonal antibody) compared with the full-length monoclonal antibody targeting moiety. Lastly, we uncovered that full monoclonal antibody-targeted NPs enter cancer cells via clathrin-mediated endocytosis and traffic through the endolysosomal pathway. Taken together, these results support a pathway for developing a clinical formulation using a full-length Fn14 monoclonal antibody as the targeting moiety for a DART cancer nanotherapeutic agent.


Asunto(s)
Nanopartículas , Neoplasias , Corona de Proteínas , Receptores del Factor de Necrosis Tumoral/química , Receptores del Factor de Necrosis Tumoral/metabolismo , Línea Celular Tumoral , Anticuerpos Monoclonales , Nanopartículas/química
6.
Neurosurgery ; 93(6): 1346-1352, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37530524

RESUMEN

BACKGROUND AND OBJECTIVES: Intracranial meningiomas are a diverse group of tumors, which vary by grade, genetic composition, location, and vasculature. Expanding the understanding of the supply of skull base (SBMs) and non-skull base meningiomas (NSBMs) will serve to further inform resection strategies. We sought to delineate the vascular supply of a series of intracranial meningiomas by tumor location. METHODS: A retrospective study of intracranial meningiomas that were studied using preoperative digital subtraction angiograms before surgical resection at a tertiary referral center was performed. Patient, tumor, radiologic, and treatment data were collected, and regression models were developed. RESULTS: One hundred sixty-five patients met inclusion criteria. The mean age was 57.1 years (SD: 12.6). The mean tumor diameter was 4.9 cm (SD: 1.5). One hundred twenty-six were World Health Organization Grade I, 37 Grade II, and 2 Grade III. Arterial feeders were tabulated by Al-Mefty's anatomic designations. SBMs were more likely to derive arterial supply from the anterior circulation, whereas NSBMs were supplied by external carotid branches. NSBMs were larger (5.61 cm vs 4.45 cm, P = <.001), were more often presented with seizure (20% vs 8%, P = .03), were higher grade ( P = <.001) had more frequent peritumoral brain edema (84.6% vs 66%, P = .04), and had more bilateral feeders (47.7% vs 28%, P = .01) compared with SBMs. More arterial feeders were significantly associated with lower tumor grade ( P = .023, OR = 0.59). Higher tumor grade (Grade II/III) was associated with fewer arterial feeders ( P = .017, RR = 0.74). CONCLUSION: Meningioma location is associated with specific vascular supply patterns, grade, and patient outcomes. This information suggests that grade I tumors, especially larger tumors, are more likely to have diverse vascular supply patterns, including internal carotid branches. This study may inform preoperative embolization and surgical considerations, particularly for large skull base tumors.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Neoplasias de la Base del Cráneo , Humanos , Persona de Mediana Edad , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Meningioma/patología , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Neoplasias Meníngeas/patología , Estudios Retrospectivos , Base del Cráneo/diagnóstico por imagen , Base del Cráneo/patología , Neoplasias de la Base del Cráneo/diagnóstico por imagen , Neoplasias de la Base del Cráneo/cirugía , Neoplasias de la Base del Cráneo/patología
7.
JAMA Oncol ; 9(8): 1066-1073, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289451

RESUMEN

Importance: Preoperative stereotactic radiosurgery (SRS) has been demonstrated as a feasible alternative to postoperative SRS for resectable brain metastases (BMs) with potential benefits in adverse radiation effects (AREs) and meningeal disease (MD). However, mature large-cohort multicenter data are lacking. Objective: To evaluate preoperative SRS outcomes and prognostic factors from a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). Design, Setting, and Participants: This multicenter cohort study included patients with BMs from solid cancers, of which at least 1 lesion received preoperative SRS and a planned resection, from 8 institutions. Radiosurgery to synchronous intact BMs was allowed. Exclusion criteria included prior or planned whole-brain radiotherapy and no cranial imaging follow-up. Patients were treated between 2005 and 2021, with most treated between 2017 and 2021. Exposures: Preoperative SRS to a median dose to 15 Gy in 1 fraction or 24 Gy in 3 fractions delivered at a median (IQR) of 2 (1-4) days before resection. Main Outcomes and Measures: The primary end points were cavity local recurrence (LR), MD, ARE, overall survival (OS), and multivariable analysis of prognostic factors associated with these outcomes. Results: The study cohort included 404 patients (214 women [53%]; median [IQR] age, 60.6 [54.0-69.6] years) with 416 resected index lesions. The 2-year cavity LR rate was 13.7%. Systemic disease status, extent of resection, SRS fractionation, type of surgery (piecemeal vs en bloc), and primary tumor type were associated with cavity LR risk. The 2-year MD rate was 5.8%, with extent of resection, primary tumor type, and posterior fossa location being associated with MD risk. The 2-year any-grade ARE rate was 7.4%, with target margin expansion greater than 1 mm and melanoma primary being associated with ARE risk. Median OS was 17.2 months (95% CI, 14.1-21.3 months), with systemic disease status, extent of resection, and primary tumor type being the strongest prognostic factors associated with OS. Conclusions and Relevance: In this cohort study, the rates of cavity LR, ARE, and MD after preoperative SRS were found to be notably low. Several tumor and treatment factors were identified that are associated with risk of cavity LR, ARE, MD, and OS after treatment with preoperative SRS. A phase 3 randomized clinical trial of preoperative vs postoperative SRS (NRG BN012) has began enrolling (NCT05438212).


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Femenino , Persona de Mediana Edad , Radiocirugia/métodos , Estudios de Cohortes , Estudios Retrospectivos , Factores de Riesgo , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/secundario
8.
Mol Pharm ; 20(1): 314-330, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36374573

RESUMEN

Triple-negative breast cancer (TNBC) patients with brain metastasis (BM) face dismal prognosis due to the limited therapeutic efficacy of the currently available treatment options. We previously demonstrated that paclitaxel-loaded PLGA-PEG nanoparticles (NPs) directed to the Fn14 receptor, termed "DARTs", are more efficacious than Abraxane─an FDA-approved paclitaxel nanoformulation─following intravenous delivery in a mouse model of TNBC BM. However, the precise basis for this difference was not investigated. Here, we further examine the utility of the DART drug delivery platform in complementary xenograft and syngeneic TNBC BM models. First, we demonstrated that, in comparison to nontargeted NPs, DART NPs exhibit preferential association with Fn14-positive human and murine TNBC cell lines cultured in vitro. We next identified tumor cells as the predominant source of Fn14 expression in the TNBC BM-immune microenvironment with minimal expression by microglia, infiltrating macrophages, monocytes, or lymphocytes. We then show that despite similar accumulation in brains harboring TNBC tumors, Fn14-targeted DARTs exhibit significant and specific association with Fn14-positive TNBC cells compared to nontargeted NPs or Abraxane. Together, these results indicate that Fn14 expression primarily by tumor cells in TNBC BMs enables selective DART NP delivery to these cells, likely driving the significantly improved therapeutic efficacy observed in our prior work.


Asunto(s)
Neoplasias Encefálicas , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Microambiente Tumoral
9.
Oncogene ; 41(50): 5361-5372, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36344676

RESUMEN

Glioma stem cells (GSCs) promote tumor progression and therapeutic resistance and exhibit remarkable bioenergetic and metabolic plasticity, a phenomenon that has been linked to their ability to escape standard and targeted therapies. However, specific mechanisms that promote therapeutic resistance have been somewhat elusive. We hypothesized that because GSCs proliferate continuously, they may require the salvage and de novo nucleotide synthesis pathways to satisfy their bioenergetic needs. Here, we demonstrate that GSCs lacking EGFR (or EGFRvIII) amplification are exquisitely sensitive to de novo pyrimidine synthesis perturbations, while GSCs that amplify EGFR are utterly resistant. Furthermore, we show that EGFRvIII promotes BAY2402234 resistance in otherwise BAY2402234 responsive GSCs. Remarkably, a novel, orally bioavailable, blood-brain-barrier penetrating, dihydroorotate dehydrogenase (DHODH) inhibitor BAY2402234 was found to abrogate GSC proliferation, block cell-cycle progression, and induce DNA damage and apoptosis. When dosed daily by oral gavage, BAY2402234 significantly impaired the growth of two different intracranial human glioblastoma xenograft models in mice. Given this observed efficacy and the previously established safety profiles in preclinical animal models and human clinical trials, the clinical testing of BAY2402234 in patients with primary glioblastoma that lacks EGFR amplification is warranted.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Ratones , Animales , Dihidroorotato Deshidrogenasa , Células Madre Neoplásicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Daño del ADN , Proliferación Celular , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral
11.
Adv Drug Deliv Rev ; 188: 114415, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35787387

RESUMEN

Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Humanos , Microambiente Tumoral
12.
Artículo en Inglés | MEDLINE | ID: mdl-35735205

RESUMEN

Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light-tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.


Asunto(s)
Neoplasias Encefálicas , Hipertermia Inducida , Terapia por Láser , Nanopartículas , Humanos , Terapia por Láser/efectos adversos , Terapia por Láser/métodos , Rayos Láser , Imagen por Resonancia Magnética/métodos , Nanopartículas/uso terapéutico
13.
J Vis Exp ; (183)2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35604202

RESUMEN

The present protocol describes a standardized paradigm for rodent brain tumor resection and tissue preservation. In clinical practice, maximal tumor resection is the standard-of-care treatment for most brain tumors. However, most currently available preclinical brain tumor models either do not include resection, or utilize surgical resection models that are time-consuming and lead to significant postoperative morbidity, mortality, or experimental variability. In addition, performing resection in rodents can be daunting for several reasons, including a lack of clinically comparable surgical tools or protocols and the absence of an established platform for standardized tissue collection. This protocol highlights the use of a multi-functional, non-ablative resection device and an integrated tissue preservation system adapted from the clinical version of the device. The device applied in the present study combines tunable suction and a cylindrical blade at the aperture to precisely probe, cut, and suction tissue. The minimally invasive resection device performs its functions via the same burr hole used for the initial tumor implantation. This approach minimizes alterations to regional anatomy during biopsy or resection surgeries and reduces the risk of significant blood loss. These factors significantly reduced the operative time (<2 min/animal), improved postoperative animal survival, lower variability in experimental groups, and result in high viability of resected tissues and cells for future analyses. This process is facilitated by a blade speed of ~1,400 cycles/min, which allows the harvesting of tissues into a sterile closed system that can be filled with a physiologic solution of choice. Given the emerging importance of studying and accurately modeling the impact of surgery, preservation and rigorous comparative analysis of regionalized tumor resection specimens, and intra-cavity-delivered therapeutics, this unique protocol will expand opportunities to explore unanswered questions about perioperative management and therapeutic discovery for brain tumor patients.


Asunto(s)
Neoplasias Encefálicas , Roedores , Animales , Encéfalo/cirugía , Neoplasias Encefálicas/cirugía , Humanos , Microcirugia , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Técnicas Estereotáxicas
14.
J Neurooncol ; 157(2): 221-236, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35235137

RESUMEN

BACKGROUND: Focused ultrasound (FUS) is an emerging technology, offering the capability of tuning and prescribing thermal and mechanical treatments within the brain. While early works in utilizing this technology have mainly focused on maximizing the delivery of therapeutics across the blood-brain barrier (BBB), the potential therapeutic impact of FUS-induced controlled thermal and mechanical stress to modulate anti-tumor immunity is becoming increasingly recognized. OBJECTIVE: To better understand the roles of FUS-mediated thermal and mechanical stress in promoting anti-tumor immunity in central nervous system tumors, we performed a comprehensive literature review on focused ultrasound-mediated immunomodulation and immunotherapy in brain tumors. METHODS: First, we summarize the current clinical experience with immunotherapy. Then, we discuss the unique and distinct immunomodulatory effects of the FUS-mediated thermal and mechanical stress in the brain tumor-immune microenvironment. Finally, we highlight recent findings that indicate that its combination with immune adjuvants can promote robust responses in brain tumors. RESULTS: Along with the rapid advancement of FUS technologies into recent clinical trials, this technology through mild-hyperthermia, thermal ablation, mechanical perturbation mediated by microbubbles, and histotripsy each inducing distinct vascular and immunological effects, is offering the unique opportunity to improve immunotherapeutic trafficking and convert immunologically "cold" tumors into immunologically "hot" ones that are prone to generate prolonged anti-tumor immune responses. CONCLUSIONS: While FUS technology is clearly accelerating concepts for new immunotherapeutic combinations, additional parallel efforts to detail rational therapeutic strategies supported by rigorous preclinical studies are still in need to leverage potential synergies of this technology with immune adjuvants. This work will accelerate the discovery and clinical implementation of new effective FUS immunotherapeutic combinations for brain tumor patients.


Asunto(s)
Neoplasias Encefálicas , Terapia por Ultrasonido , Barrera Hematoencefálica , Neoplasias Encefálicas/terapia , Sistemas de Liberación de Medicamentos , Humanos , Inmunidad , Inmunomodulación , Inmunoterapia , Estrés Mecánico , Microambiente Tumoral
15.
Cancer Immunol Immunother ; 71(8): 1813-1822, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35020009

RESUMEN

Pediatric glioblastoma is relatively rare compared with its adult counterpart but is associated with a similarly grim prognosis. Available data indicate that pediatric glioblastomas are molecularly distinct from adult tumors, and relatively little is known about the pediatric glioblastoma tumor microenvironment (TME). Cancer immunotherapy has emerged as a new pillar of cancer treatment and is revolutionizing the care of patients with many advanced solid tumors, including melanoma, non-small cell lung cancer, head and neck cancer, and renal cell carcinoma. Unfortunately, attempts to treat adult glioblastoma with current immunotherapies have had limited success to date. Nevertheless, the immune milieu in pediatric glioblastoma is distinct from that found in adult tumors, and evidence suggests that pediatric tumors are less immunosuppressive. As a result, immunotherapies should be specifically evaluated in the pediatric context. The purpose of this review is to explore known and emerging mechanisms of immune evasion in pediatric glioblastoma and highlight potential opportunities for implementing immunotherapy in the treatment of these devastating pediatric brain tumors.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Glioblastoma , Neoplasias Pulmonares , Adulto , Niño , Humanos , Evasión Inmune , Inmunoterapia , Microambiente Tumoral
16.
Adv Drug Deliv Rev ; 180: 114043, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801617

RESUMEN

Brain tumors are particularly challenging malignancies, due to their location in a structurally and functionally distinct part of the human body - the central nervous system (CNS). The CNS is separated and protected by a unique system of brain and blood vessel cells which together prevent most bloodborne therapeutics from entering the brain tumor microenvironment (TME). Recently, great strides have been made through microbubble (MB) ultrasound contrast agents in conjunction with ultrasound energy to locally increase the permeability of brain vessels and modulate the brain TME. As we elaborate in this review, this physical method can effectively deliver a wide range of anticancer agents, including chemotherapeutics, antibodies, and nanoparticle drug conjugates across a range of preclinical brain tumors, including high grade glioma (glioblastoma), diffuse intrinsic pontine gliomas, and brain metastasis. Moreover, recent evidence suggests that this technology can promote the effective delivery of novel immunotherapeutic agents, including immune check-point inhibitors and chimeric antigen receptor T cells, among others. With early clinical studies demonstrating safety, and several Phase I/II trials testing the preclinical findings underway, this technology is making firm steps towards shaping the future treatments of primary and metastatic brain cancer. By elaborating on its key components, including ultrasound systems and MB technology, along with methods for closed-loop spatial and temporal control of MB activity, we highlight how this technology can be tuned to enable new, personalized treatment strategies for primary brain malignancies and brain metastases.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Animales , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/patología , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Microburbujas , Sonicación , Microambiente Tumoral
17.
Drug Deliv Transl Res ; 11(6): 2344-2370, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34716900

RESUMEN

Brain metastases (BMs) are the most common type of brain tumor, and the incidence among breast cancer (BC) patients has been steadily increasing over the past two decades. Indeed, ~ 30% of all patients with metastatic BC will develop BMs, and due to few effective treatments, many will succumb to the disease within a year. Historically, patients with BMs have been largely excluded from clinical trials investigating systemic therapies including immunotherapies (ITs) due to limited brain penetration of systemically administered drugs combined with previous assumptions that BMs are poorly immunogenic. It is now understood that the central nervous system (CNS) is an immunologically distinct site and there is increasing evidence that enhancing immune responses to BCBMs will improve patient outcomes and the efficacy of current treatment regimens. Progress in IT for BCBMs, however, has been slow due to several intrinsic limitations to drug delivery within the brain, substantial safety concerns, and few known targets for BCBM IT. Emerging studies demonstrate that nanomedicine may be a powerful approach to overcome such limitations, and has the potential to greatly improve IT strategies for BMs specifically. This review summarizes the evidence for IT as an effective strategy for BCBM treatment and focuses on the nanotherapeutic strategies currently being explored for BCBMs including targeting the blood-brain/tumor barrier (BBB/BTB), tumor cells, and tumor-supporting immune cells for concentrated drug release within BCBMs, as well as use of nanoparticles (NPs) for delivering immunomodulatory agents, for inducing immunogenic cell death, or for potentiating anti-tumor T cell responses.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Nanopartículas , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunoterapia , Nanomedicina
18.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504017

RESUMEN

Pharmacological treatment of gliomas and other brain-infiltrating tumors remains challenging due to limited delivery of most therapeutics across the blood-brain barrier (BBB). Transcranial MRI-guided focused ultrasound (FUS), an emerging technology for noninvasive brain treatments, enables transient opening of the BBB through acoustic activation of circulating microbubbles. Here, we evaluate the safety and utility of transcranial microbubble-enhanced FUS (MB-FUS) for spatially targeted BBB opening in patients with infiltrating gliomas. In this Phase 0 clinical trial (NCT03322813), we conducted comparative and quantitative analyses of FUS exposures (sonications) and their effects on gliomas using MRI, histopathology, microbubble acoustic emissions (harmonic dose [HD]), and fluorescence-guided surgery metrics. Contrast-enhanced MRI and histopathology indicated safe and reproducible BBB opening in all patients. These observations occurred using a power cycling closed feedback loop controller, with the power varying by nearly an order of magnitude on average. This range underscores the need for monitoring and titrating the exposure on a patient-by-patient basis. We found a positive correlation between microbubble acoustic emissions (HD) and MR-evident BBB opening (P = 0.07) and associated interstitial changes (P < 0.01), demonstrating the unique capability to titrate the MB-FUS effects in gliomas. Importantly, we identified a 2.2-fold increase of fluorescein accumulation in MB-FUS-treated compared to untreated nonenhancing tumor tissues (P < 0.01) while accounting for vascular density. Collectively, this study demonstrates the capabilities of MB-FUS for safe, localized, controlled BBB opening and highlights the potential of this technology to improve the surgical and pharmacologic treatment of brain tumors.


Asunto(s)
Barrera Hematoencefálica/fisiología , Sistemas de Liberación de Medicamentos/métodos , Terapia por Ultrasonido/métodos , Adulto , Transporte Biológico/fisiología , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/fisiología , Estudios de Factibilidad , Femenino , Glioma/fisiopatología , Glioma/terapia , Humanos , Masculino , Microburbujas , Sonicación/métodos
19.
Int J Radiat Oncol Biol Phys ; 111(3): 764-772, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058254

RESUMEN

PURPOSE: Preoperative radiosurgery (SRS) is a feasible alternative to postoperative SRS, with potential benefits in adverse radiation effect (ARE) and leptomeningeal disease (LMD) relapse. However, previous studies are limited by small patient numbers and single-institution designs. Our aim was to evaluate preoperative SRS outcomes and prognostic factors from a large multicenter cohort (Preoperative Radiosurgery for Brain Metastases [PROPS-BM]). METHODS AND MATERIALS: Patients with brain metastases (BM) from solid cancers who had at least 1 lesion treated with preoperative SRS and underwent a planned resection were included from 5 institutions. SRS to synchronous intact BM was allowed. Radiographic meningeal disease (MD) was categorized as either nodular or classical "sugarcoating" (cLMD). RESULTS: The cohort included 242 patients with 253 index lesions. Most patients (62.4%) had a single BM, 93.7% underwent gross total resection, and 98.8% were treated with a single fraction to a median dose of 15 Gray to a median gross tumor volume of 9.9 cc. Cavity local recurrence (LR) rates at 1 and 2 years were 15% and 17.9%, respectively. Subtotal resection (STR) was a strong independent predictor of LR (hazard ratio, 9.1; P < .001). One and 2-year rates of MD were 6.1% and 7.6% and of any grade ARE were 4.7% and 6.8% , respectively. The median overall survival (OS) duration was 16.9 months and the 2-year OS rate was 38.4%. The majority of MD was cLMD (13 of 19 patients with MD; 68.4%). Of 242 patients, 10 (4.1%) experienced grade ≥3 postoperative surgical complications. CONCLUSIONS: To our knowledge, this multicenter study represents the largest cohort treated with preoperative SRS. The favorable outcomes previously demonstrated in single-institution studies, particularly the low rates of MD and ARE, are confirmed in this expanded multicenter analysis, without evidence of an excessive postoperative surgical complication risk. STR, though infrequent, is associated with significantly worse cavity LR. A randomized trial between preoperative and postoperative SRS is warranted and is currently being designed.


Asunto(s)
Neoplasias Encefálicas , Traumatismos por Radiación , Radiocirugia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Estudios de Cohortes , Humanos , Recurrencia Local de Neoplasia , Complicaciones Posoperatorias , Radiocirugia/efectos adversos , Estudios Retrospectivos , Resultado del Tratamiento
20.
Glia ; 69(9): 2199-2214, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33991013

RESUMEN

High-grade gliomas (HGGs) are aggressive, treatment-resistant, and often fatal human brain cancers. The TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) signaling axis is involved in tissue repair after injury and constitutive signaling has been implicated in the pathogenesis of numerous solid cancers. The Fn14 gene is expressed at low levels in the normal, uninjured brain but is highly expressed in primary isocitrate dehydrogenase wild-type and recurrent HGGs. Fn14 signaling is implicated in numerous aspects of glioma biology including brain invasion and chemotherapy resistance, but whether Fn14 overexpression can directly promote tumor malignancy has not been reported. Here, we used the replication-competent avian sarcoma-leukosis virus/tumor virus A system to examine the impact of Fn14 expression on glioma development and pathobiology. We found that the sole addition of Fn14 to an established oncogenic cocktail previously shown to generate proneural-like gliomas led to the development of highly invasive and lethal brain cancer with striking biological features including extensive pseudopalisading necrosis, constitutive canonical and noncanonical NF-κB pathway signaling, and high plasminogen activator inhibitor-1 (PAI-1) expression. Analyses of HGG patient datasets revealed that high human PAI-1 gene (SERPINE1) expression correlates with shorter patient survival, and that the SERPINE1 and Fn14 (TNFRSF12A) genes are frequently co-expressed in bulk tumor tissues, in tumor subregions, and in malignant cells residing in the tumor microenvironment. These findings provide new insights into the potential importance of Fn14 in human HGG pathobiology and designate both the NF-κB signaling node and PAI-1 as potential targets for therapeutic intervention. MAIN POINTS: This work demonstrates that elevated levels of the TWEAK receptor Fn14 in tumor-initiating, neural progenitor cells leads to the transformation of proneural-like gliomas into more aggressive and lethal tumors that exhibit constitutive NF-κB pathway activation and plasminogen activator inhibitor-1 overexpression.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Factores de Crecimiento de Fibroblastos , Glioma/patología , Humanos , Invasividad Neoplásica , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Receptor de TWEAK , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA