Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(15): e2306027, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353396

RESUMEN

Temozolomide (TMZ) represents the cornerstone of therapy for glioblastoma (GBM). However, acquisition of resistance limits its therapeutic potential. The human kinome is an undisputable source of druggable targets, still, current knowledge remains confined to a limited fraction of it, with a multitude of under-investigated proteins yet to be characterized. Here, following a kinome-wide RNAi screen, pantothenate kinase 4 (PANK4) isuncovered as a modulator of TMZ resistance in GBM. Validation of PANK4 across various TMZ-resistant GBM cell models, patient-derived GBM cell lines, tissue samples, as well as in vivo studies, corroborates the potential translational significance of these findings. Moreover, PANK4 expression is induced during TMZ treatment, and its expression is associated with a worse clinical outcome. Furthermore, a Tandem Mass Tag (TMT)-based quantitative proteomic approach, reveals that PANK4 abrogation leads to a significant downregulation of a host of proteins with central roles in cellular detoxification and cellular response to oxidative stress. More specifically, as cells undergo genotoxic stress during TMZ exposure, PANK4 depletion represents a crucial event that can lead to accumulation of intracellular reactive oxygen species (ROS) and subsequent cell death. Collectively, a previously unreported role for PANK4 in mediating therapeutic resistance to TMZ in GBM is unveiled.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Proteómica , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Resistencia a Antineoplásicos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral
2.
Bioinform Adv ; 2(1): vbac084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699394

RESUMEN

Motivation: Protein-protein interaction (PPI) networks have been shown to successfully predict essential proteins. However, such networks are derived generically from experiments on many thousands of different cells. Consequently, conventional PPI networks cannot capture the variation of genetic dependencies that exists across different cell types, let alone those that emerge as a result of the massive cell restructuring that occurs during carcinogenesis. Predicting cell-specific dependencies is of considerable therapeutic benefit, facilitating the use of drugs to inhibit those proteins on which the cancer cells have become specifically dependent. In order to go beyond the limitations of the generic PPI, we have attempted to personalise PPI networks to reflect cell-specific patterns of gene expression and mutation. By using 12 topological features of the resulting PPIs, together with matched gene dependency data from DepMap, we trained random-forest classifiers (DependANT) to predict novel gene dependencies. Results: We found that DependANT improves the power of the baseline generic PPI models in predicting common gene dependencies, by up to 10.8% and is more sensitive than the baseline generic model when predicting genes on which only a small number of cell types are dependent. Availability and implementation: Software available at https://bitbucket.org/bioinformatics_lab_sussex/dependant2. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

3.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744086

RESUMEN

Using pan-cancer data from The Cancer Genome Atlas (TCGA), we investigated how patterns in copy number alterations in cancer cells vary both by tissue type and as a function of genetic alteration. We find that patterns in both chromosomal ploidy and individual arm copy number are dependent on tumour type. We highlight for example, the significant losses in chromosome arm 3p and the gain of ploidy in 5q in kidney clear cell renal cell carcinoma tissue samples. We find that specific gene mutations are associated with genome-wide copy number changes. Using signatures derived from non-negative factorisation, we also find gene mutations that are associated with particular patterns of ploidy change. Finally, utilising a set of machine learning classifiers, we successfully predicted the presence of mutated genes in a sample using arm-wise copy number patterns as features. This demonstrates that mutations in specific genes are correlated and may lead to specific patterns of ploidy loss and gain across chromosome arms. Using these same classifiers, we highlight which arms are most predictive of commonly mutated genes in kidney renal clear cell carcinoma (KIRC).


Asunto(s)
Carcinoma de Células Renales/patología , Variaciones en el Número de Copia de ADN/genética , Neoplasias Renales/patología , Área Bajo la Curva , Carcinoma de Células Renales/genética , Cromosomas/genética , Humanos , Neoplasias Renales/genética , Aprendizaje Automático , Mutación , Ploidias , Curva ROC , Proteína p53 Supresora de Tumor/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
4.
Mol Cell ; 73(2): 212-223.e7, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30554942

RESUMEN

Cohesin subunits are frequently mutated in cancer, but how they function as tumor suppressors is unknown. Cohesin mediates sister chromatid cohesion, but this is not always perturbed in cancer cells. Here, we identify a previously unknown role for cohesin. We find that cohesin is required to repress transcription at DNA double-strand breaks (DSBs). Notably, cohesin represses transcription at DSBs throughout interphase, indicating that this is distinct from its known role in mediating DNA repair through sister chromatid cohesion. We identified a cancer-associated SA2 mutation that supports sister chromatid cohesion but is unable to repress transcription at DSBs. We further show that failure to repress transcription at DSBs leads to large-scale genome rearrangements. Cancer samples lacking SA2 display mutational patterns consistent with loss of this pathway. These findings uncover a new function for cohesin that provides insights into its frequent loss in cancer.


Asunto(s)
Neoplasias Óseas/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Interfase , Osteosarcoma/genética , Transcripción Genética , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Reparación del ADN , Regulación hacia Abajo , Fase G1 , Fase G2 , Regulación Neoplásica de la Expresión Génica , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cohesinas
5.
J Integr Bioinform ; 14(3)2017 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-28941356

RESUMEN

The development of improved cancer therapies is frequently cited as an urgent unmet medical need. Here we describe how genetic interactions are being therapeutically exploited to identify novel targeted treatments for cancer. We discuss the current methodologies that use 'omics data to identify genetic interactions, in particular focusing on synthetic sickness lethality (SSL) and synthetic dosage lethality (SDL). We describe the experimental and computational approaches undertaken both in humans and model organisms to identify these interactions. Finally we discuss some of the identified targets with licensed drugs, inhibitors in clinical trials or with compounds under development.


Asunto(s)
Simulación por Computador , Redes Reguladoras de Genes/efectos de los fármacos , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/terapia , Animales , Humanos , Aprendizaje Automático
6.
Expert Opin Drug Discov ; 12(6): 599-609, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28462602

RESUMEN

INTRODUCTION: The development of improved cancer therapies is frequently cited as an urgent unmet medical need. Recent advances in platform technologies and the increasing availability of biological 'big data' are providing an unparalleled opportunity to systematically identify the key genes and pathways involved in tumorigenesis. The discoveries made using these new technologies may lead to novel therapeutic interventions. Areas covered: The authors discuss the current approaches that use 'big data' to identify cancer drivers. These approaches include the analysis of genomic sequencing data, pathway data, multi-platform data, identifying genetic interactions such as synthetic lethality and using cell line data. They review how big data is being used to identify novel drug targets. The authors then provide an overview of the available data repositories and tools being used at the forefront of cancer drug discovery. Expert opinion: Targeted therapies based on the genomic events driving the tumour will eventually inform treatment protocols. However, using a tailored approach to treat all tumour patients may require developing a large repertoire of targeted drugs.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas/métodos , Neoplasias/tratamiento farmacológico , Línea Celular , Diseño de Fármacos , Genómica/métodos , Humanos , Terapia Molecular Dirigida , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA