Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260438

RESUMEN

Phospholipase C isozymes (PLCs) hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, important signaling molecules involved in many cellular processes. PLCG1 encodes the PLCγ1 isozyme that is broadly expressed. Hyperactive somatic mutations of PLCG1 are observed in multiple cancers, but only one germline variant has been reported. Here we describe three unrelated individuals with de novo heterozygous missense variants in PLCG1 (p.Asp1019Gly, p.His380Arg, and p.Asp1165Gly) who exhibit variable phenotypes including hearing loss, ocular pathology and cardiac septal defects. To model these variants in vivo, we generated the analogous variants in the Drosophila ortholog, small wing (sl). We created a null allele slT2A and assessed the expression pattern. sl is broadly expressed, including in wing discs, eye discs, and a subset of neurons and glia. Loss of sl causes wing size reductions, ectopic wing veins and supernumerary photoreceptors. We document that mutant flies exhibit a reduced lifespan and age-dependent locomotor defects. Expressing wild-type sl in slT2A mutant rescues the loss-of-function phenotypes whereas expressing the variants causes lethality. Ubiquitous overexpression of the variants also reduces viability, suggesting that the variants are toxic. Ectopic expression of an established hyperactive PLCG1 variant (p.Asp1165His) in the wing pouch causes severe wing phenotypes, resembling those observed with overexpression of the p.Asp1019Gly or p.Asp1165Gly variants, further arguing that these two are gain-of-function variants. However, the wing phenotypes associated with p.His380Arg overexpression are mild. Our data suggest that the PLCG1 de novo heterozygous missense variants are pathogenic and contribute to the features observed in the probands.

2.
BMC Biol ; 18(1): 142, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33070780

RESUMEN

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.


Asunto(s)
Genoma de los Insectos , Rasgos de la Historia de Vida , Thysanoptera/fisiología , Transcriptoma , Animales , Productos Agrícolas , Conducta Alimentaria , Cadena Alimentaria , Inmunidad Innata/genética , Percepción , Filogenia , Reproducción/genética , Thysanoptera/genética , Thysanoptera/inmunología
3.
BMC Evol Biol ; 20(1): 33, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32106815

RESUMEN

BACKGROUND: Human chromosome 19 has many unique characteristics including gene density more than double the genome-wide average and 20 large tandemly clustered gene families. It also has the highest GC content of any chromosome, especially outside gene clusters. The high GC content and concomitant high content of hypermutable CpG sites raises the possibility chromosome 19 exhibits higher levels of nucleotide diversity both within and between species, and may possess greater variation in DNA methylation that regulates gene expression. RESULTS: We examined GC and CpG content of chromosome 19 orthologs across representatives of the primate order. In all 12 primate species with suitable genome assemblies, chromosome 19 orthologs have the highest GC content of any chromosome. CpG dinucleotides and CpG islands are also more prevalent in chromosome 19 orthologs than other chromosomes. GC and CpG content are generally higher outside the gene clusters. Intra-species variation based on SNPs in human common dbSNP, rhesus, crab eating macaque, baboon and marmoset datasets is most prevalent on chromosome 19 and its orthologs. Inter-species comparisons based on phyloP conservation show accelerated nucleotide evolution for chromosome 19 promoter flanking and enhancer regions. These same regulatory regions show the highest CpG density of any chromosome suggesting they possess considerable methylome regulatory potential. CONCLUSIONS: The pattern of high GC and CpG content in chromosome 19 orthologs, particularly outside gene clusters, is present from human to mouse lemur representing 74 million years of primate evolution. Much CpG variation exists both within and between primate species with a portion of this variation occurring in regulatory regions.


Asunto(s)
Cromosomas Humanos Par 19/genética , Secuencia Conservada , Primates/clasificación , Primates/genética , Animales , Composición de Base , Secuencia de Bases , Cromosomas/genética , Secuencia Conservada/genética , Islas de CpG , Metilación de ADN , Fosfatos de Dinucleósidos/genética , Genoma , Humanos , Lemur/clasificación , Lemur/genética , Ratones , Familia de Multigenes , Filogenia , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética
4.
Comp Med ; 68(6): 489-495, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30486920

RESUMEN

Here we report a case of severe growth retardation and neurologic abnormalities in a female gray mouse lemur (Microcebus murinus), a small NHP species for which the genomic sequence recently became available. The female lemur we present here died on postnatal day 125. This lemur had impaired development of motor skills and showed severe ataxia and tremors. In addition, hearing seemed normal whereas ophthalmic examination revealed incipient bilateral cataracts, abnormal pigmentation in the lens of the left eye, and a missing optokinetic nystagmus, which indicated impaired vision. Most prominently, the lemur showed severe growth retardation. Necropsy revealed maldevelopment of the left reproductive organs and unilateral dilation of the right lateral ventricle, which was confirmed on brain MRI. Brain histology further revealed large, bilateral areas of vacuolation within the brainstem, but immunohistochemistry indicated no sign of pathologic prion protein deposition. Full genomic sequencing of the lemur revealed a probably pathologic mutation in LARGE2 of the LARGE gene family, which has been associated with congenital muscular dystrophies. However, potentially functional mutations in other genes were also present. The observed behavioral and motor signs in the presented animal might have been linked to spongiform degeneration and resulting brainstem dysfunction and progressive muscle weakness. The macroscopic developmental abnormalities and ophthalmic findings might be genetic in origin and linked to the mutation in LARGE2.


Asunto(s)
Cheirogaleidae/crecimiento & desarrollo , Trastornos del Crecimiento/veterinaria , Enfermedades Neurodegenerativas/veterinaria , Enfermedades de los Primates/patología , Síndrome de Walker-Warburg/veterinaria , Animales , Conducta Animal , Tronco Encefálico/patología , Cheirogaleidae/anatomía & histología , Cheirogaleidae/genética , Ojo/patología , Femenino , Trastornos del Crecimiento/patología , Enfermedades Neurodegenerativas/patología , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patología
5.
BMC Biol ; 15(1): 62, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28756775

RESUMEN

BACKGROUND: The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. RESULTS: We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. CONCLUSIONS: Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genoma , Arañas/genética , Animales , Femenino , Masculino , Sintenía
6.
Nat Commun ; 7: 11693, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27243207

RESUMEN

Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level.


Asunto(s)
Ecotipo , Evolución Molecular , Especiación Genética , Selección Genética/genética , Orca/fisiología , Adaptación Biológica/genética , Animales , Biopsia , Femenino , Interacción Gen-Ambiente , Flujo Genético , Variación Genética/genética , Genética de Población/métodos , Genoma , Genómica/métodos , Masculino , Filogenia , Aislamiento Reproductivo , Piel , Simpatría/genética
7.
BMC Genomics ; 15: 86, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24479613

RESUMEN

BACKGROUND: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. RESULTS: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. CONCLUSIONS: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.


Asunto(s)
Abejas/genética , Genes de Insecto , Animales , Composición de Base , Bases de Datos Genéticas , Secuencias Repetitivas Esparcidas/genética , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Péptidos/análisis , Análisis de Secuencia de ARN , Homología de Secuencia de Aminoácido
8.
Science ; 328(5981): 994-9, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20489017

RESUMEN

The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified ("novel") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (approximately 97%) were unique. In addition, this set of microbial genomes allows for approximately 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.


Asunto(s)
Genoma Bacteriano , Metagenoma/genética , Análisis de Secuencia de ADN , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biodiversidad , Biología Computacional , Bases de Datos Genéticas , Tracto Gastrointestinal/microbiología , Genes Bacterianos , Variación Genética , Genoma Arqueal , Humanos , Metagenómica/métodos , Metagenómica/normas , Boca/microbiología , Péptidos/química , Péptidos/genética , Filogenia , Sistema Respiratorio/microbiología , Análisis de Secuencia de ADN/normas , Piel/microbiología , Sistema Urogenital/microbiología
9.
Nature ; 440(7088): 1194-8, 2006 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-16641997

RESUMEN

After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chromosomes. Chromosome 3 comprises just four contigs, one of which currently represents the longest unbroken stretch of finished DNA sequence known so far. The chromosome is remarkable in having the lowest rate of segmental duplication in the genome. It also includes a chemokine receptor gene cluster as well as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric inversion that occurred some time after the split of Homininae from Ponginae, and propose an evolutionary history of the inversion.


Asunto(s)
Cromosomas Humanos Par 3/genética , Animales , Secuencia de Bases , Rotura Cromosómica/genética , Inversión Cromosómica/genética , Mapeo Contig , Islas de CpG/genética , ADN Complementario/genética , Evolución Molecular , Etiquetas de Secuencia Expresada , Proyecto Genoma Humano , Humanos , Macaca mulatta/genética , Datos de Secuencia Molecular , Pan troglodytes/genética , Análisis de Secuencia de ADN , Sintenía/genética
10.
Nature ; 434(7031): 325-37, 2005 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-15772651

RESUMEN

The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.


Asunto(s)
Cromosomas Humanos X/genética , Evolución Molecular , Genómica , Análisis de Secuencia de ADN , Animales , Antígenos de Neoplasias/genética , Centrómero/genética , Cromosomas Humanos Y/genética , Mapeo Contig , Intercambio Genético/genética , Compensación de Dosificación (Genética) , Femenino , Ligamiento Genético/genética , Genética Médica , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , ARN/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Homología de Secuencia de Ácido Nucleico , Testículo/metabolismo
11.
J Neurosci ; 24(16): 3933-43, 2004 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-15102909

RESUMEN

Consolidation of long-term memory (LTM) is a complex process requiring synthesis of new mRNAs and proteins. Many studies have characterized the requirement for de novo mRNA and protein synthesis; however, few studies have comprehensively identified genes regulated during LTM consolidation. We show that consolidation of long-term contextual memory in the hippocampus triggers altered expression of numerous genes encompassing many aspects of neuronal function. Like contextual memory formation, this altered gene expression required NMDA receptor activation and was specific for situations in which the animal formed an association between a physical context and a sensory stimulus. Using a bioinformatics approach, we found that regulatory elements for several transcription factors are over-represented in the upstream region of genes regulated during consolidation of LTM. Using a knock-out mouse, we found that c-rel, one of the transcription factors identified in our bioinformatics study, is necessary for hippocampus-dependent long-term memory formation.


Asunto(s)
Memoria/fisiología , Proteínas Proto-Oncogénicas c-rel/genética , Proteínas Proto-Oncogénicas c-rel/metabolismo , Animales , Conducta Animal/fisiología , Cromosomas/genética , Biología Computacional/métodos , Condicionamiento Clásico , Electrochoque , Miedo/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Dimensión del Dolor , Receptores de N-Metil-D-Aspartato/metabolismo , Conducta Espacial/fisiología
12.
Proc Natl Acad Sci U S A ; 99(26): 16899-903, 2002 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-12477932

RESUMEN

The National Institutes of Health Mammalian Gene Collection (MGC) Program is a multiinstitutional effort to identify and sequence a cDNA clone containing a complete ORF for each human and mouse gene. ESTs were generated from libraries enriched for full-length cDNAs and analyzed to identify candidate full-ORF clones, which then were sequenced to high accuracy. The MGC has currently sequenced and verified the full ORF for a nonredundant set of >9,000 human and >6,000 mouse genes. Candidate full-ORF clones for an additional 7,800 human and 3,500 mouse genes also have been identified. All MGC sequences and clones are available without restriction through public databases and clone distribution networks (see http:mgc.nci.nih.gov).


Asunto(s)
ADN Complementario/química , Análisis de Secuencia de ADN , Algoritmos , Animales , ADN Complementario/análisis , Biblioteca de Genes , Humanos , Ratones , Sistemas de Lectura Abierta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA