Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Cardiovasc Res ; 3(1): 28-45, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-39195894

RESUMEN

Cardiac resident MerTK+ macrophages exert multiple protective roles after ischemic injury; however, the mechanisms regulating their fate are not fully understood. In the present study, we show that the GAS6-inducible transcription factor, activating transcription factor 3 (ATF3), prevents apoptosis of MerTK+ macrophages after ischemia-reperfusion (IR) injury by repressing the transcription of multiple genes involved in type I interferon expression (Ifih1 and Ifnb1) and apoptosis (Apaf1). Mice lacking ATF3 in cardiac macrophages or myeloid cells showed excessive loss of MerTK+ cardiac macrophages, poor angiogenesis and worse heart dysfunction after IR, which were rescued by the transfer of MerTK+ cardiac macrophages. GAS6 administration improved cardiac repair in an ATF3-dependent manner. Finally, we showed a negative association of GAS6 and ATF3 expression with the risk of major adverse cardiac events in patients with ischemic heart disease. These results indicate that the GAS6-ATF3 axis has a protective role against IR injury by regulating MerTK+ cardiac macrophage survival and/or proliferation.


Asunto(s)
Factor de Transcripción Activador 3 , Apoptosis , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular , Macrófagos , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica , Tirosina Quinasa c-Mer , Animales , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Macrófagos/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa c-Mer/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Humanos , Masculino , Ratones Noqueados , Transducción de Señal , Ratones , Células Cultivadas
2.
Adv Sci (Weinh) ; 11(22): e2400713, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593402

RESUMEN

Osteoarthritis (OA) is a chronic inflammatory disease characterized by cartilage destruction, synovitis, and osteophyte formation. Disease-modifying treatments for OA are currently lacking. Because inflammation mediated by an imbalance of M1/M2 macrophages in the synovial cavities contributes to OA progression, regulating the M1 to M2 polarization of macrophages can be a potential therapeutic strategy. Basing on the inherent immune mechanism and pathological environment of OA, an immunoglobulin G-conjugated bilirubin/JPH203 self-assembled nanoparticle (IgG/BRJ) is developed, and its therapeutic potential for OA is evaluated. After intra-articular administration, IgG conjugation facilitates the recognition and engulfment of nanoparticles by the M1 macrophages. The internalized nanoparticles disassemble in response to the increased oxidative stress, and the released bilirubin (BR) and JPH203 scavenge reactive oxygen species (ROS), inhibit the nuclear factor kappa-B pathway, and suppress the activated mammalian target of rapamycin pathway, result in the repolarization of macrophages and enhance M2/M1 ratios. Suppression of the inflammatory environment by IgG/BRJ promotes cartilage protection and repair in an OA rat model, thereby improving therapeutic outcomes. This strategy of opsonization involving M1 macrophages to engulf carrier-free BR/JPH203 nanoparticles to suppress inflammation for OA therapy holds great potential for OA intervention and treatment.


Asunto(s)
Bilirrubina , Modelos Animales de Enfermedad , Inflamación , Macrófagos , Nanopartículas , Osteoartritis , Animales , Osteoartritis/inmunología , Osteoartritis/tratamiento farmacológico , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratas , Inflamación/inmunología , Bilirrubina/farmacología , Bilirrubina/metabolismo , Masculino , Ratas Sprague-Dawley
3.
Curr Med Chem ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37877504

RESUMEN

The quinoline scaffold is a widely recognized heterocycle with applications across various disease categories, ranging from malaria and viral infections to bacterial infections, high cholesterol, and even tumors. Consequently, quinoline plays a crucial role in the development of new drugs, and the field greatly benefits from advancements in computer-aided drug design. This review aims to provide insights into the evolution of quinoline and its derivatives, offering a comprehensive exploration of both marketed and developing drugs. Furthermore, the function and mechanism of quinoline compounds are introduced. Many studies rely on cell experiments to demonstrate drug cytotoxicity. In the concluding section of this review, the interaction between quinoline compounds and targets is simulated using computer-aided drug design methods. A thorough analysis is conducted on the potential influencing factors affecting the binding state between quinoline compounds and targets. Notably, the Pi-Alkyl interaction emerges as a significant contributor, while hydrogen bonding is identified as a pivotal bond in these interactions. This review serves as a valuable overview of the potential contributions of quinoline compounds to cancer treatment. It seamlessly combines the essential functions of marketed quinoline drugs with the promise held by emerging quinoline-based compounds. Additionally, the simulation of interactions between quinoline compounds and proteins through computer-aided design enhances our understanding of these compounds' efficacy.

4.
Biomed Res Int ; 2023: 7563802, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082189

RESUMEN

Background: The efficacy of robotic-assisted gait training (RAGT) should be considered versatilely; among which, gait assessment is one of the most important measures; observational gait assessment is the most commonly used method in clinical practice, but it has certain limitations due to the deviation of subjectivity; instrumental assessments such as three-dimensional gait analysis (3DGA) and surface electromyography (sEMG) can be used to obtain gait data and muscle activation during walking in stroke patients with hemiplegia, so as to better evaluate the rehabilitation effect of RAGT. Objective: This single-blind randomized controlled trial is aimed at analyzing the impact of RAGT on the 3DGA parameters and muscle activation in patients with subacute stroke and evaluating the clinical effect of improving walking function of RAGT. Methods: This randomized controlled trial evaluated the improvement of 4-week RAGT on patients with subacute stroke by 3DGA and surface electromyography (sEMG), combined with clinical scales: experimental group (n = 18, 20 sessions of RAGT) or control group (n = 16, 20 sessions of conventional gait training). Gait performance was evaluated by the 3DGA, and clinical evaluations based on Fugl-Meyer assessment for lower extremity (FMA-LE), functional ambulation category (FAC), and 6-minute walk test (6MWT) were used. Of these patients, 30 patients underwent sEMG measurement synchronized with 3DGA; the cocontraction index in swing phase of the knee and ankle of the affected side was calculated. Results: After 4 weeks of intervention, intragroup comparison showed that walking speed, temporal symmetry, bilateral stride length, range of motion (ROM) of the bilateral hip, flexion angle of the affected knee, ROM of the affected ankle, FMA-LE, FAC, and 6MWT in the experimental group were significantly improved (p < 0.05), and in the control group, significant improvements were observed in walking speed, temporal symmetry, stride length of the affected side, ROM of the affected hip, FMA-LE, FAC, and 6MWT (p < 0.05). Intergroup comparison showed that the experimental group significantly outperformed the control group in walking speed, temporal symmetry of the spatiotemporal parameters, ROM of the affected hip and peak flexion of the knee in the kinematic parameters, and the FMA-LE and FAC in the clinical scale (p < 0.05). In patients evaluated by sEMG, the experimental group showed a noticeable improvement in the cocontraction index of the knee (p = 0.042), while no significant improvement was observed in the control group (p = 0.196), and the experimental group was better than the control group (p = 0.020). No noticeable changes were observed in the cocontraction index of the ankle in both groups (p > 0.05). Conclusions: Compared with conventional gait training, RAGT successfully improved part of the spatiotemporal parameters of patients and optimized the motion of the affected lower limb joints and muscle activation patterns during walking, which is crucial for further rehabilitation of walking ability in patients with subacute stroke. This trial is registered with ChiCTR2200066402.


Asunto(s)
Trastornos Neurológicos de la Marcha , Procedimientos Quirúrgicos Robotizados , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Análisis de la Marcha , Método Simple Ciego , Electromiografía , Marcha/fisiología , Caminata
5.
ACS Appl Mater Interfaces ; 15(14): 17627-17640, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37000897

RESUMEN

Tumor recurrence remains the leading cause of treatment failure following surgical resection of glioblastoma (GBM). M2-like tumor-associated macrophages (TAMs) infiltrating the tumor tissue promote tumor progression and seriously impair the efficacy of chemotherapy and immunotherapy. In addition, designing drugs capable of crossing the blood-brain barrier and eliciting the applicable organic response is an ambitious challenge. Here, we propose an injectable nanoparticle-hydrogel system that uses doxorubicin (DOX)-loaded mesoporous polydopamine (MPDA) nanoparticles encapsulated in M1 macrophage-derived nanovesicles (M1NVs) as effectors and fibrin hydrogels as in situ delivery vehicles. In vivo fluorescence imaging shows that the hydrogel system triggers photo-chemo-immunotherapy to destroy remaining tumor cells when delivered to the tumor cavity of a model of subtotal GBM resection. Concomitantly, the result of flow cytometry indicated that M1NVs comprehensively improved the immune microenvironment by reprogramming M2-like TAMs to M1-like TAMs. This hydrogel system combined with a near-infrared laser effectively promoted the continuous infiltration of T cells, restored T cell effector function, inhibited the infiltration of myeloid-derived suppressor cells and regulatory T cells, and thereby exhibited a strong antitumor immune response and significantly inhibited tumor growth. Hence, MPDA-DOX-NVs@Gel (MD-NVs@Gel) presents a unique clinical strategy for the treatment of GBM recurrence.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Adyuvantes Inmunológicos/farmacología , Macrófagos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Inmunoterapia , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Microambiente Tumoral , Línea Celular Tumoral
6.
Front Pharmacol ; 14: 1099927, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726580

RESUMEN

Background: Although the role of tumor microenvironment in lung adenocarcinoma (LUAD) has been explored in a number of studies, the value of TME-related signatures in immunotherapy has not been comprehensively characterized. Materials and Methods: Consensus clustering was conducted to characterize TME-based molecular subtypes using transcription data of LUAD samples. The biological pathways and immune microenvironment were assessed by CIBERSORT, ESTIMATE, and gene set enrichment analysis. A TME-related risk model was established through the algorithms of least absolute shrinkage and selection operator (Lasso) and stepwise Akaike information criterion (stepAIC). Results: Four TME-based molecular subtypes including C1, C2, C3, and C4 were identified, and they showed distinct overall survival, genomic characteristics, DNA methylation pattern, immune microenvironment, and biological pathways. C1 had the worst prognosis and high tumor proliferation rate. C3 and C4 had higher enrichment of anti-tumor signatures compared to C1 and C2. C4 had evidently low enrichment of epithelial-mesenchymal transition (EMT) signature and tumor proliferation rate. C3 was predicted to be more sensitive to immunotherapy compared with other subtypes. C1 is more sensitive to chemotherapy drugs, including Docetaxel, Vinorelbine and Cisplatin, while C3 is more sensitive to Paclitaxel. A five-gene risk model was constructed, which showed a favorable performance in three independent datasets. Low-risk group showed a longer overall survival, more infiltrated immune cells, and higher response to immunotherapy than high-risk group. Conclusion: This study comprehensively characterized the molecular features of LUAD patients based on TME-related signatures, demonstrating the potential of TME-based signatures in exploring the mechanisms of LUAD development. The TME-related risk model was of clinical value to predict LUAD prognosis and guide immunotherapy.

7.
Front Cell Dev Biol ; 10: 1011435, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172282

RESUMEN

Polyphenols are secondary plant metabolites or organic compounds synthesized by them. In other words, these are molecules that are found in plants. Due to the wide variety of polyphenols and the plants in which they are found, these compounds are divided according to the source of origin, the function of the polyphenols, and their chemical structure; where the main ones are flavonoids. All the beneficial properties of polyphenols have not yet been studied, since this group of substances is very extensive and diverse. However, most polyphenols are known to be powerful antioxidants and have anti-inflammatory effects. Polyphenols help fight cell damage caused by free radicals and immune system components. In particular, polyphenols are credited with a preventive effect that helps protect the body from certain forms of cancer. The onset and progression of tumors may be related directly to oxidative stress, or inflammation. These processes can increase the amount of DNA damage and lead to loss of control over cell division. A number of studies have shown that oxidative stress uncontrolled by antioxidants or an uncontrolled and prolonged inflammatory process increases the risk of developing sarcoma, melanoma, and breast, lung, liver, and prostate cancer. Therefore, a more in-depth study of the effect of polyphenolic compounds on certain signaling pathways that determine the complex cascade of oncogenesis is a promising direction in the search for new methods for the prevention and treatment of tumors.

8.
Front Oncol ; 12: 898537, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646622

RESUMEN

Objectives: miR-181a/b and miR-410 downregulation and miR-155 upregulation has been shown to play important roles in the oncogenesis and progression of gliomas including high-grade gliomas. However, the potential role of plasma miR-181a/b, miR-410 and miR-155 in the diagnosis and prognosis of high-grade gliomas remains poorly known. Methods: We retrieved published articles from the PubMed, the Cochrane Central Register of Controlled Trials, and Web of Science database and obtained different sets of data on microRNAs (miRNAs) expression profiling in glioma and highlighted the most frequently dysregulated miRNAs and their gene-targets (PDCD4, WNT5A, MET, and EGFR) in high-grade gliomas. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was carried out to measure the pre- and postoperative plasma levels of miR-181a/b, miR-410 and miR-155 in 114 Grade 3-4 glioma patients, 77 Grade 1-2 glioma patients and 85 healthy volunteers as control group. The diagnostic and prognostic value of circulating miR-181a/b, miR-410 and miR-155 as biomarker was estimated by the Receiver Operating Characteristic (ROC) curve and the area under the curve (AUC) and Kaplan-Meier analysis. Results: We found a plasma miRNA signature including three downexpressed miRNAs and one overexpressed (miR-181a, miR-181b and miR-410; miR-155) in high-grade glioma patients in comparison with low-grade glioma patients control group. The ROC curve AUC of these four circulating miRNAs were ≥ 0.75 for high-grade glioma patients in before and after surgery. Higher circulating miR-155 and lower miR-181a/b and miR-410 expression is associated with clinical data, clinic pathological variables, worse overall survival (OS) of patients and negative correlated with potential gene-targets expression. Moreover, Kaplan-Meier analysis showed that miR-181a/b, miR-410 and miR-155 were independent predictors of OS in high-grade glioma patients. Conclusions: Our data, for the first time, demonstrated that circulating miR-181a/b, miR-410 and miR-155 could be a useful diagnostic and prognostic non-invasive biomarkers in high-grade gliomas.

9.
Front Oncol ; 12: 887294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651787

RESUMEN

The natural product pectolinarigenin exerts anti-inflammatory activity and anti-tumor effects, and exhibits different biological functions, particularly in autophagy and cell cycle regulation. However, the antineoplastic effect of pectolinarigenin on glioblastoma (GBM) remains unclear. In the present study, we found that pectolinarigenin inhibits glioblastoma proliferation, increases autophagic flux, and induces cell cycle arrest by inhibiting ribonucleotide reductase subunit M2 (RRM2), which can be reversed by RRM2 overexpression plasmid. Additionally, pectolinarigenin promoted RRM2 protein degradation via autolysosome-dependent pathway by increasing autophagic flow. RRM2 knockdown promoted the degradation of CDK1 protein through autolysosome-dependent pathway by increasing autophagic flow, thereby inhibiting the proliferation of glioblastoma by inducing G2/M phase cell cycle arrest. Clinical data analysis revealed that RRM2 expression in glioma patients was inversely correlated with the overall survival. Collectively, pectolinarigenin promoted the degradation of CDK1 protein dependent on autolysosomal pathway through increasing autophagic flux by inhibiting RRM2, thereby inhibiting the proliferation of glioblastoma cells by inducing G2/M phase cell cycle arrest, and RRM2 may be a potential therapeutic target and a prognosis and predictive biomarker in GBM patients.

10.
J Control Release ; 347: 237-255, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35489544

RESUMEN

Osteoarthritis (OA) is a chronic disease caused by joint inflammation. Its occurrence and development depend on a continuous inflammation environment. The activated M1 macrophages play a critical role in the inflammatory response of OA. Regulating the pro-inflammatory M1 to anti-inflammatory M2 macrophages in the OA articular cavity could be a rational strategy for OA treatment. It has been acknowledged that activated macrophages could proactively capture opsonized nanoparticles in the bloodstream and then accumulate into the reticuloendothelial system (RES) organs. Based on this fact, a trapping strategy is proposed, which transforms a normal nanoparticle into an opsonized attractant to target and regulate macrophage polarization. In this study, the opsonized nanoparticle (IgG/Bb@BRPL) had several key features, including an immunoglobulin IgG (the opsonized layer), an anti-inflammatory agent berberine (Bb), and an oxidative stress-responsive bilirubin grafted polylysine biomaterial (BR-PLL) for drug loading (the inner nanocore). In vitro studies confirmed that IgG/Bb@BRPL prefer to be phagocytosed by M1 macrophage, not M0. And the internalized IgG/Bb@BRPL effectively promoted macrophage polarization toward the M2 phenotype and protected nearby chondrocytes. In vivo studies suggested that IgG/Bb@BRPL significantly enhanced therapeutic outcomes by suppressing inflammation and promoting cartilage repair while not prolonging the retention period compared to non-opsonized counterparts. This proof-of-concept study provided a novel opsonization trapping strategy for OA drug delivery and treatment.


Asunto(s)
Nanopartículas , Osteoartritis , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Inmunoglobulina G/farmacología , Inflamación , Macrófagos , Osteoartritis/tratamiento farmacológico
11.
Chin Neurosurg J ; 7(1): 37, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34372942

RESUMEN

BACKGROUND: Tumors are the second most common cause of death in humans worldwide, second only to cardiovascular and cerebrovascular diseases. Although methods and techniques for the treatment of tumors continue to improve, the effect is not satisfactory. These may lack effective therapeutic targets. This study aimed to evaluate the value of SNHG12 as a biomarker in the prognosis and clinical characteristics of various cancer patients. METHODS: We analyzed SNHG12 expression and plotted the survival curves of all cancer samples in the TCGA database using the GEPIA tool. Then, we searched for eligible papers up to April 1, 2019, in databases. Next, the data were extracted from studies examining SNHG12 expression, overall survival and clinicopathological features in patients with malignant tumors. We used Review Manager 5.3 and Stata 15 software to analyze the statistical data. RESULTS: In the TCGA database, abnormally high expression of SNHG12 in tumor samples indicates that the patient has a poor prognosis. Results of meta-analysis is that SNHG12 high expression is related to low overall survival (HR = 2.72, 95% CI = 1.95-3.8, P < 0.00001), high tumor stage (OR = 3.94, 95% CI = 2.80-5.53, P < 0.00001), high grade (OR = 2.04, 95% CI = 1.18-3.51, P = 0.01), distant metastasis (OR = 2.20, 95% CI = 1.40-3.46, P = 0.0006), tumor size (OR = 2.79, 95% CI = 1.89-4.14, P < 0.00001), and lymph node metastasis (OR = 2.66, 95% CI = 1.65-4.29, P < 0.0001). CONCLUSIONS: Our study confirmed that the high expression level of SNHG12 is closely related to the clinicopathological characteristics and prognosis of patients and is a new predictive biomarker for various cancer patients.

13.
Chin Neurosurg J ; 7(1): 21, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33750478

RESUMEN

BACKGROUND: Glioma is the most common malignant brain tumor in adults. The standard treatment scheme of glioma is surgical resection combined alternative radio- and chemotherapy. However, the outcome of glioma patients was unsatisfied. Here, we aimed to explore the molecular and biological function characteristics of GPX7 in glioma. METHODS: The multidimensional data of glioma samples were downloaded from Chinese Glioma Genome Atlas (CGGA). RT-qPCR method was used to identify the expression status of GPX7. Kaplan-Meier curves and Cox regression analysis were used to explore the prognostic value of GPX7. Gene Set Enrichment Analysis (GSEA) was applied to investigate the GPX7-related functions in glioma. RESULTS: The results indicated that the expression of GPX7 in glioma was higher compared to that in normal brain tissue. Univariate and multivariate Cox regression analyses confirmed that the expression value of GPX7 was an independent prognostic factor in glioma. The GSEA analysis showed that GPX7 was significantly enriched in the cell cycle pathway, ECM pathway, focal adhesion pathway, and toll-like receptor pathway. CONCLUSIONS: The GPX7 was recommended as an independent risk factor for patients diagnosed with glioma for the first time and GPX7 could be potentially used as the therapy target in future. Furthermore, we attempted to explore a potential biomarker for improving the diagnosis and prognosis of patients with glioma.

14.
Front Genet ; 11: 604655, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584801

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system. As biomedicine advances, the researcher has found the development of GBM is closely related to immunity. In this study, we evaluated the GBM tumor immunoreactivity and defined the Immune-High (IH) and Immune-Low (IL) immunophenotypes using transcriptome data from 144 tumors profiled by The Cancer Genome Atlas (TCGA) project based on the single-sample gene set enrichment analysis (ssGSEA) of five immune expression signatures (IFN-γ response, macrophages, lymphocyte infiltration, TGF-ß response, and wound healing). Next, we identified six immunophenotype-related long non-coding RNA biomarkers (im-lncRNAs, USP30-AS1, HCP5, PSMB8-AS1, AL133264.2, LINC01684, and LINC01506) by employing a machine learning computational framework combining minimum redundancy maximum relevance algorithm (mRMR) and random forest model. Moreover, the expression level of identified im-lncRNAs was converted into an im-lncScore using the normalized principal component analysis. The im-lncScore showed a promising performance for distinguishing the GBM immunophenotypes with an area under the curve (AUC) of 0.928. Furthermore, the im-lncRNAs were also closely associated with the levels of tumor immune cell infiltration in GBM. In summary, the im-lncRNA signature had important clinical implications for tumor immunophenotyping and guiding immunotherapy in glioblastoma patients in future.

15.
Front Genet ; 11: 612037, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391355

RESUMEN

BACKGROUND: The tumor immune microenvironment is closely related to the malignant progression and treatment resistance of glioma. Long non-coding RNA (lncRNA) plays a regulatory role in this process. We investigated the pathological mechanisms within the glioma microenvironment and potential immunotherapy resistance related to lncRNAs. METHOD: We downloaded datasets derived from glioma patients and analyzed them by hierarchical clustering. Next, we analyzed the immune microenvironment of glioma, related gene expression, and patient survival. Coexpressed lncRNAs were analyzed to generate a model of lncRNAs and immune-related genes. We analyzed the model using survival and Cox regression. Then, univariate, multivariate, receiver operating characteristic (ROC), and principle component analysis (PCA) methods were used to verify the accuracy of the model. Finally, GSEA was used to evaluate which functions and pathways were associated with the differential genes. RESULTS: Normal brain tissue maintains a low-medium immune state, and gliomas are clearly divided into three groups (low to high immunity). The stromal, immune, and estimate scores increased along with immunity, while tumor purity decreased. Further, human leukocyte antigen (HLA), programmed cell death-1 (PDL1), T cell immunoglobulin and mucin domain 3 (TIM-3), B7-H3, and cytotoxic T lymphocyte-associated antigen-4 (CTLA4) expression increases concomitantly with immune state, and the patient prognosis worsens. Five immune gene-related lncRNAs (AP001007.1, LBX-AS1, MIR155HG, MAPT-AS1, and LINC00515) were screened to construct risk models. We found that risk scores are related to patient prognosis and clinical characteristics, and are positively correlated with PDL1, TIM-3, and B7-H3 expression. These lncRNAs may regulate the tumor immune microenvironment through cytokine-cytokine receptor interactions, complement, and coagulation cascades, and may promote CD8 + T cell, regulatory T cell, M1 macrophage, and infiltrating neutrophils activity in the high-immunity group. In vitro, the abnormal expression of immune-related lncRNAs and the relationship between risk scores and immune-related indicators (PDL1, CTLA4, CD3, CD8, iNOS) were verified by q-PCR and immunohistochemistry (IHC). CONCLUSION: For the first time, we constructed immune gene-related lncRNA risk models. The risk score may be a new biomarker for tumor immune subtypes and provide molecular targets for glioma immunotherapy.

16.
Cell ; 178(4): 919-932.e14, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31353219

RESUMEN

Cutaneous TRPV1+ neurons directly sense noxious stimuli, inflammatory cytokines, and pathogen-associated molecules and are required for innate immunity against some skin pathogens. Important unanswered questions are whether TRPV1+ neuron activation in isolation is sufficient to initiate innate immune responses and what is the biological function for TRPV1+ neuron-initiated immune responses. We used TRPV1-Ai32 optogenetic mice and cutaneous light stimulation to activate cutaneous neurons in the absence of tissue damage or pathogen-associated products. We found that TRPV1+ neuron activation was sufficient to elicit a local type 17 immune response that augmented host defense to C. albicans and S. aureus. Moreover, local neuron activation elicited type 17 responses and augmented host defense at adjacent, unstimulated skin through a nerve reflex arc. These data show the sufficiency of TRPV1+ neuron activation for host defense and demonstrate the existence of functional anticipatory innate immunity at sites adjacent to infection that depends on antidromic neuron activation.


Asunto(s)
Inmunidad Innata/inmunología , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Células Receptoras Sensoriales/inmunología , Piel/inmunología , Canales Catiónicos TRPV/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Candida albicans/inmunología , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/métodos , Piel/microbiología , Staphylococcus aureus/inmunología , Canales Catiónicos TRPV/genética
17.
Cancer Sci ; 110(1): 107-117, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30387548

RESUMEN

Gliomas are the most common central nervous system tumors. They show malignant characteristics indicating rapid proliferation and a high invasive capacity and are associated with a poor prognosis. In our previous study, p68 was overexpressed in glioma cells and correlated with both the degree of glioma differentiation and poor overall survival. Downregulating p68 significantly suppressed proliferation in glioma cells. Moreover, we found that the p68 gene promoted glioma cell growth by activating the nuclear factor-κB signaling pathway by a downstream molecular mechanism that remains incompletely understood. In this study, we found that dual specificity phosphatase 5 (DUSP5) is a downstream target of p68, using microarray analysis, and that p68 negatively regulates DUSP5. Upregulating DUSP5 in stably expressing cell lines (U87 and LN-229) suppressed proliferation, invasion, and migration in glioma cells in vitro, consistent with the downregulation of p68. Furthermore, upregulating DUSP5 inhibited ERK phosphorylation, whereas downregulating DUSP5 rescued the level of ERK phosphorylation, indicating that DUSP5 might negatively regulate ERK signaling. Additionally, we show that DUSP5 levels were lower in high-grade glioma than in low-grade glioma. These results suggest that the p68-induced negative regulation of DUSP5 promoted invasion by glioma cells and mediated the activation of the ERK signaling pathway.


Asunto(s)
Neoplasias Encefálicas/genética , ARN Helicasas DEAD-box/genética , Fosfatasas de Especificidad Dual/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , ARN Helicasas DEAD-box/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glioma/metabolismo , Glioma/patología , Humanos , Sistema de Señalización de MAP Quinasas/genética , Invasividad Neoplásica , Fosforilación , Interferencia de ARN
18.
Cell Death Dis ; 9(10): 1032, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30302016

RESUMEN

Glioblastoma is the most common and aggressive primary brain tumor in adults. New drug design and development is still a major challenge for glioma treatment. Increasing evidence has shown that nitazoxanide, an antiprotozoal drug, has a novel antitumor role in various tumors and exhibits multiple molecular functions, especially autophagic regulation. However, whether nitazoxanide-associated autophagy has an antineoplastic effect in glioma remains unclear. Here, we aimed to explore the underlying molecular mechanism of nitazoxanide in glioblastoma. Our results showed that nitazoxanide suppressed cell growth and induced cell cycle arrest in glioblastoma by upregulating ING1 expression with a favorable toxicity profile. Nitazoxanide inhibited autophagy through blockage of late-stage lysosome acidification, resulting in decreased cleavage of ING1. A combination with chloroquine or Torin1 enhanced or impaired the chemotherapeutic effect of nitazoxanide in glioblastoma cells. Taken together, these findings indicate that nitazoxanide as an autophagy inhibitor induces cell cycle arrest in glioblastoma via upregulated ING1 due to increased transcription and decreased post-translational degradation by late-stage autophagic inhibition.


Asunto(s)
Antiprotozoarios/farmacología , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Proteína Inhibidora del Crecimiento 1/metabolismo , Tiazoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cloroquina/farmacología , Glioma/tratamiento farmacológico , Glioma/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Naftiridinas/farmacología , Nitrocompuestos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
19.
Gastroenterol Res Pract ; 2017: 2920384, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197204

RESUMEN

Objective. Aimed to study the effects of endostar and cisplatin using an in vivo imaging system (IVIS) in a model of peritoneal metastasis of gastric cancer. Methods. NUGC-4 gastric cancer cells transfected with luciferase gene (NUGC-4-Luc) were injected i.p. into nude mice. One week later, mice were randomly injected i.p.: group 1, cisplatin (d1-3) + endostar (d4-7); group 2, endostar (d1-4) + cisplatin (d5-7); group 3, endostar + cisplatin d1, 4, and 7; group 4, saline for two weeks. One week after the final administration, mice were sacrificed. Bioluminescent data, microvessel density (MVD), and lymphatic vessel density (LVD) were analyzed. Results. Among the four groups, there were no significant differences in the weights and in the number of cancer cell photons on days 1 and 8 (P > 0.05). On day 15, the numbers in groups 3 and 1 were less than that in group 2 (P < 0.05). On day 21, group 3 was significantly less than group 2 (P < 0.05). MVD of group 4 was less than that of groups 1 and 2 (P < 0.01). There was no significant difference between groups 2 and 3 (P > 0.05) or in LVD number among the four groups (P > 0.05). Conclusions. IVIS® was more useful than weight, volume of ascites, and number of peritoneal nodules. The simultaneous group was superior to sequential groups in killing cancer cells and inhibiting vascular endothelium. Cisplatin-endostar was superior to endostar-cisplatin in killing cancer cells, while the latter in inhibiting peritoneal vascular endothelium.

20.
Tumour Biol ; 37(3): 3549-60, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26454746

RESUMEN

Glioma is the most common primary brain tumor in the central nervous system (CNS) with high morbidity and mortality in adults. Although standardized comprehensive therapy has been adapted, the prognosis of glioma patients is still frustrating and thus novel therapeutic strategies are urgently in need. Quercetin (Quer), an important flavonoid compound found in many herbs, is shown to be effective in some tumor models including glioma. Recently, it is reported that adequate regulation of autophagy can strengthen cytotoxic effect of anticancer drugs. However, it is not yet fully clear how we should modulate autophagy to achieve a satisfactory therapeutic effect. 3-Methyladenine (3-MA) and Beclin1 short hairpin RNA (shRNA) were used to inhibit the early stage of autophage while chloroquine (CQ) to inhibit the late stage. MTT assay was implemented to determine cell viability. Transmission electron microscopy, western blot, and immunohistochemistry were adopted to evaluate autophagy. Western blot, flow cytometry, and immunohistochemistry were used to detect apoptosis. C6 glioma xenograft models were established to assess the therapeutic effect (the body weight change, the median survival time, and tumor volume) in vivo. Quercetin can inhibit cell viability and induce autophagy of U87 and U251 glioma cells in a dose-dependent manner. Inhibition of early-stage autophagy by 3-MA or shRNA against Beclin1 attenuated the quercetin-induced cytotoxicity. In contrast, suppression of autophagy at a late stage by CQ enhanced the anti-glioma efficiency of quercetin. Therapeutic effect of quercetin for malignant glioma can be strengthened by inhibition of autophagy at a late stage, not initial stage, which may provide a novel opportunity for glioma therapy.


Asunto(s)
Autofagia/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Quercetina/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cloroquina/farmacología , Glioma/mortalidad , Glioma/patología , Humanos , Masculino , Estadificación de Neoplasias , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA