Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Sports Med ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698624

RESUMEN

Hydrogen, as an antioxidant, may have the potential to mitigate fatigue and improve selected oxidative stress markers induced by strenuous exercise. This study focused on previously unexplored approach of pre-exercise inhalation of hydrogen-rich gas (HRG). Twenty-four healthy adult men first completed prelaboratories to determine maximum cycling power (Wmax) and maximum cycling time (Tmax). Then they were subjected to ride Tmax at 80% Wmax on cycle ergometers after inhaled HRG or placebo gas (air) for 60-minute in a double-blind, counterbalanced, randomized, and crossover design. The cycling frequency in the fatigue modelling process and the rating of perceived exertion (RPE) at the beginning and end of the ride were recorded. Before gas inhalation and after fatigue modeling, visual analog scale (VAS) for fatigue and counter-movement jump (CMJ) were tested, and blood samples were obtained. The results showed that compared to placebo, HRG inhalation induced significant improvement in VAS, RPE, the cycling frequency in the last 30 seconds, the ability to inhibit hydroxyl radicals, and serum lactate after exercise (p < 0.028), but not in CMJ height and glutathione peroxidase activit. In conclusions, HRG inhalation prior to acute exercise can alleviate exercise-induced fatigue, maintain functional performance, and improve hydroxyl radical and lactate levels.

2.
Mol Cell Endocrinol ; : 112283, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815795

RESUMEN

Adipose tissue macrophages (ATMs) are key players in the development of obesity and associated metabolic inflammation, which contributes to systemic metabolic dysfunction, and understanding the interaction between macrophages and adipocytes is crucial for developing novel macrophage-based strategies against obesity. Here, we found that Legumain (Lgmn), a well-known lysosomal cysteine protease, is expressed mainly in the ATMs of obese mice. To further define the potential role of Lgmn-expressing macrophages in the generation of an aberrant metabolic state, LgmnF/F; LysMCre mice, which do not express Lgmn in macrophages, were maintained on a high-fat diet (HFD), and metabolic parameters were assessed. Macrophage-specific Lgmn deficiency protects mice against diet-induced obesity, diminishes the quantity of proinflammatory macrophages in obese adipose tissues, and alleviates hepatic steatosis and insulin resistance. By analysing the transcriptome and proteome of murine visceral white adipose tissue (vWAT) after HFD feeding, we determined that macrophage Lgmn deficiency causes changes in lipid metabolism and the inflammatory response. Furthermore, the reciprocity of macrophage-derived Lgmn with integrin α5ß1 in adipocytes was tested via colocalization analyses. It is further demonstrated in macrophage and adipocyte coculture system that macrophage derived Lgmn bound to integrin α5ß1 in adipocytes, therefore attenuating PKA activation, downregulating lipolysis-related proteins and eventually exacerbating obesity development. Overall, our study identified Lgmn as a previously unrecognized regulator involved in the interaction between ATMs and adipocytes contributing to diet-induced obesity and suggested that Lgmn is a potential target for treating metabolic disorders.

3.
Stem Cells Int ; 2023: 8227382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181828

RESUMEN

Although bone mesenchymal stem cell (BMSC) transplantation has been applied to the treatment of spinal cord injury (SCI), the effect is unsatisfactory due to the specific microenvironment (inflammation and oxidative stress) in the SCI area, which leads to the low survival rate of transplanted cells. Thus, additional strategies are required to improve the efficacy of transplanted cells in the treatment of SCI. Hydrogen possesses antioxidant and anti-inflammatory properties. However, whether hydrogen can enhance the effect of BMSC transplantation in the treatment of SCI has not yet been reported. This study was aimed at investigating whether hydrogen promotes the therapeutic effect of BMSC transplantation in the treatment of SCI in rats. In vitro, BMSCs were cultured in a normal medium and a hydrogen-rich medium to study the effect of hydrogen on the proliferation and migration of BMSCs. BMSCs were treated with a serum-deprived medium (SDM), and the effects of hydrogen on the apoptosis of BMSCs were studied. In vivo, BMSCs were injected into the rat model of SCI. Hydrogen-rich saline (5 ml/kg) and saline (5 ml/kg) were given once a day via intraperitoneal injection. Neurological function was evaluated using the Basso, Beattie, and Bresnahan (BBB) and CatWalk gait analyses. Histopathological analysis, oxidative stress, inflammatory factors (TNF-α, IL-1ß, and IL-6), and transplanted cell viability were detected at 3 and 28 days after SCI. Hydrogen can significantly enhance BMSC proliferation and migration and tolerance to SDM. Hydrogen and BMSC codelivery can significantly enhance neurological function recovery by improving the transplant cell survival rate and migration. Hydrogen can enhance the migration and proliferation capacity of BMSCs to repair SCI by reducing the inflammatory response and oxidative stress in the injured area. Hydrogen and BMSC codelivery is an effective method to improve BMSC transplantation in the treatment of SCI.

4.
J Orthop Surg Res ; 18(1): 339, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158945

RESUMEN

OBJECTIVE: Hypoxia can promote stem cell proliferation and migration through HIF-1α. Hypoxia can regulate cellular endoplasmic reticulum (ER) stress. Some studies have reported the relationship among hypoxia, HIF-α, and ER stress, however, while little is known about HIF-α and ER stress in ADSCs under hypoxic conditions. The purpose of the study was to investigate the role and relationship of hypoxic conditions, HIF-1α and ER stress in regulating adipose mesenchymal stem cells (ADSCs) proliferation, migration, and NPC-like differentiation. METHOD: ADSCs were pretreated with hypoxia, HIF-1α gene transfection, and HIF-1α gene silence. The ADSCs proliferation, migration, and NPC-like differentiation were assessed. The expression of HIF-1α in ADSCs was regulated; then, the changes of ER stress level in ADSCs were observed to investigate the relationship between ER stress and HIF-1α in ADSCs under hypoxic conditions. RESULT: The cell proliferation and migration assay results show that hypoxia and HIF-1α overexpression can significantly increase the ADSCs proliferation and migration, while HIF-1α inhibition can significantly decrease the ADSCs proliferation and migration. The HIF-1α and co-cultured with NPCs played an important role in the directional differentiation of ADSCs into NPCs. The hypoxia-regulated ER stress in ADSCs through the HIF-1α pathway, thereby regulating the cellular state of ADSCs, was also observed. CONCLUSION: Hypoxia and HIF-1α play important roles in proliferation, migration, and NPC-like differentiation of ADSCs. This study provides preliminary evidence that HIF-1α-regulated ER stress thus affects ADSCs proliferation, migration, and differentiation. Therefore, HIF-1α and ER may serve as key points to improve the efficacy of ADSCs in treating disc degeneration.


Asunto(s)
Células Madre Mesenquimatosas , Núcleo Pulposo , Diferenciación Celular , Proliferación Celular/genética , Estrés del Retículo Endoplásmico , Animales , Hipoxia de la Célula
5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108635

RESUMEN

Pearl powder is a famous traditional Chinese medicine that has a long history in treating palpitations, insomnia, convulsions, epilepsy, ulcers, and skin lightining. Recently, several studies have demonstrated the effects of pearl extracts on protection of ultraviolet A (UVA) induced irritation on human skin fibroblasts and inhibition of melanin genesis on B16F10 mouse melanoma cells. To further explore the effect we focused on the whitening efficacy of pearl hydrolyzed conchiolin protein (HCP) on human melanoma MNT-1 cells under the irritation of alpha-melanocyte-stimulating hormone (α-MSH) or endothelin 1 (ET-1) to evaluate the intracellular tyrosinase and melanin contents, as well as the expression levels of tyrosinase (TYR), tyrosinase related protein 1 (TRP-1), and dopachrome tautomerase (DCT) genes and related proteins. We found that HCP could decrease the intracellular melanin content by reducing the activity of intracellular tyrosinase and inhibiting the expression of TYR, TRP-1, DCT genes and proteins. At the same time, the effect of HCP on melanosome transfer effect was also investigated in the co-culture system of immortalized human keratinocyte HaCaT cells with MNT-1. The result indicated that HCP could promote the transfer of melanosomes in MNT-1 melanocytes to HaCaT cells, which might accelerate the skin whitening process by quickly transferring and metabolizing melanosomes during keratinocyte differentiation. Further study is needed to explore the mechanism of melanosome transfer with depigmentation.


Asunto(s)
Melanoma Experimental , Melanoma , Animales , Ratones , Humanos , Melaninas/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Monofenol Monooxigenasa/metabolismo , Endotelina-1/metabolismo , Línea Celular Tumoral , Melanocitos/metabolismo , Melanoma/metabolismo , Hidrolisados de Proteína/metabolismo , Melanoma Experimental/metabolismo
6.
Am J Transl Res ; 15(2): 1403-1411, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915733

RESUMEN

OBJECTIVE: To determine the influence of acupuncture at the Xinwu acupoint combined with western medicine (loratadine and fluticasone propionate) on symptom alleviation, nasal mucociliary clearance velocity (MCV), and serum histamine level of patients with allergic rhinitis (AR). METHODS: A total of 122 patients with AR treated in Gansu province hospital of TCM and The Third People's Hospital of Gansu Province from April 2019 to April 2021 were retrospectively analyzed. Among them, 54 patients treated with loratadine and fluticasone propionate were assigned to the control group, and 68 patients treated with additional acupuncture at the Xinwu acupoint based on treatment of the control group were assigned to the observation group. The treatment efficacy of the two groups was compared, and the scores of main symptoms and nasal function were also compared before and after therapy. Additionally, the two groups were compared in the levels of histamine, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and immunoglobulin E (IgE) before and after therapy. RESULTS: After therapy, the observation group yielded a higher total effective rate than the control group (P=0.006) and had lower symptom scores than the control group (P<0.001). Additionally, the MCV of the two groups increased (P<0.001), and the nasal mucociliary transit time (MTT) and nasal resistance (NR) of both groups decreased (P<0.001) after therapy. The observation group showed a greatly better improvement of nasal function than the control group (P<0.001). Moreover, after therapy, the observation group showed lower histamine and IgE levels than the control group (P<0.01) and the observation group presented significantly lower levels than the control group, and had lower rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) scores than the control group (P<0.001). The two groups were not different in the incidence of adverse reactions (P=0.886). CONCLUSION: Acupuncture at Xinwu acupoint combined with loratadine and fluticasone propionate can deliver a powerful efficacy on AR and alleviate the clinical symptoms, without increasing adverse reactions.

7.
Theriogenology ; 198: 273-281, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36623430

RESUMEN

Both melatonin and androgen, which affect sperm fertility, are the important factors in epididymis of male animal. In the present study, we confirmed that melatonin regulates the formation of dihydrotestosterone (DHT) in sheep epididymides. Here, we investigated the localization and the expression levels of melatonin keys synthases AANAT and HIOMT, membrane receptors MT1 and MT2, and nuclear receptor RORα in sheep epididymides and testes. We also cultured epididymal epithelial cells and treated them with different concentrations of melatonin (10-11-10-7 M) and luzindole (10-5 M) and 4P-PDOT (10-5 M) to investigate whether melatonin is involved in the regulation of DHT formation and whether these effects are mediated through its receptor pathways. The results showed that AANAT, HIOMT, MT1, MT2, and RORα were differentially expressed between sheep epididymides and testes. In addition, melatonin is involved in mediating the formation of DHT in epididymal epithelial cells, and its influence on DHT is at least partially regulated by the melatonin receptor pathway. Our findings showed that melatonin regulates the functions of the testes and epididymides through an autocrine mechanism and regulates the formation of androgen in sheep epididymides via the receptor pathway. These results provide a basis for further exploring the regulatory mechanisms of melatonin in animal reproduction.


Asunto(s)
Melatonina , Masculino , Animales , Ovinos , Melatonina/metabolismo , Epidídimo/metabolismo , Dihidrotestosterona , Andrógenos , Acetilserotonina O-Metiltransferasa , Semen/metabolismo , Receptores de Melatonina , Células Epiteliales/metabolismo , Receptor de Melatonina MT2/metabolismo
8.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36674716

RESUMEN

The demand for economic benefits has led to an increase in the proportion of high-concentrate (HC) feed in the ruminant diet, resulting in an increased incidence of subacute ruminal acidosis (SARA). During SARA, a high concentration of lipopolysaccharide (LPS) translocated in the rumen induces a systemic inflammatory response. Inflammatory diseases, such as endometritis and mastitis, are often associated with SARA; however, in sheep, the mechanism of the effect of SARA on the endometrium has rarely been reported. Therefore, the aim of this study was to investigate, for the first time, the influence of LPS translocation on endometrial tight junctions (TJs) during SARA in sheep. The results showed that LPS and TNFα levels in the ruminal fluid, serum, and endometrial tissue supernatant during SARA increased, transcription levels of TLR4, NFκB, and TNFα in the endometrium increased, the protein expression level of claudin-1 in the endometrium increased, and the protein expression level of occludin decreased. 17ß-estradiol (E2) inhibits claudin-1 protein expression and promotes occludin expression, and progesterone (P4) promotes claudin-1 protein expression and inhibits occludin protein expression. E2 and P4 regulate claudin-1 and occludin protein expression through their receptor pathways. Here, we found that LPS hindered the regulatory effect of E2 and P4 on endometrial TJs by inhibiting their receptor expression. The results of this study indicate that HC feeding can cause SARA-induced LPS translocation in sheep, increase susceptibility to systemic inflammation, induce the endometrial inflammatory response, and cause endometrial epithelial TJ damage directly and/or by obstructing E2 and P4 function. LPS translocation caused by SARA has also been suggested to induce an endometrial inflammatory response, resulting in endometrial epithelial barrier damage and physiological dysfunction, which seriously affects ruminant production. Therefore, this study provides new evidence that SARA is a potential factor that induces systemic inflammation in ruminants. It provides theoretical support for research on the prevention of endometritis in ruminants.


Asunto(s)
Acidosis , Endometritis , Femenino , Humanos , Ovinos , Animales , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Rumen , Endometritis/veterinaria , Endometritis/metabolismo , Lipopolisacáridos/metabolismo , Claudina-1/metabolismo , Ocludina/metabolismo , Dieta/veterinaria , Inflamación/metabolismo , Endometrio/metabolismo , Acidosis/metabolismo , Concentración de Iones de Hidrógeno
9.
J Vis Exp ; (184)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35723494

RESUMEN

Murine surgical models play an important role in preclinical research. Mechanistic insights into myocardial regeneration after cardiac injury may be gained from cardiothoracic surgery models in 0-14-day-old mice, the cardiomyocytes of which, unlike those of adults, retain proliferative capacity. Mouse pups up to 7 days old are effectively immobilized by hypothermia and do not require intubation for cardiothoracic surgery. Preadolescent (8-14-day-old) mouse pups, however, do require intubation, but this is challenging and there is little information regarding anesthesia to facilitate intubation. Here, we present dosage regimens of ketamine/xylazine/atropine in 10-day-old C57BL/6J mouse pups that allow endotracheal intubation, while minimizing animal mortality. Empirical titration of ketamine/xylazine/atropine dosage regimens to body weight indicated that the response to anesthesia of mouse pups of different weights was non-linear, whereby doses of 20/4/0.12 mg/kg, 30/4/0.12 mg/kg, and 50/6/0.18 mg/kg facilitated intubation of pups weighing between 3.15-4.49 g (n = 22), 4.50-5.49 g (n = 20), and 5.50-8.10 g (n = 20), respectively. Lower-body-weight pups required more intubation attempts than heavier pups (p < 0.001). Survival post-intubation correlated with body weight (59%, 70%, and 80% for low-, mid-, and high-weight groups, respectively, R2 = 0.995). For myocardial infarction surgery after intubation, a surgical plane of anesthesia was induced with 4.5% isoflurane in 100% oxygen and maintained with 2% isoflurane in 100% oxygen. Survival post-surgery was similar for the three weight groups at 92%, 86%, and 88% (p = 0.91). Together with refinements in animal handling practices for intubation and surgery, and minimizing cannibalization by the dam post-surgery, overall survival for the entire procedure (intubation plus surgery) correlated with body weight (55%, 60%, and 70% for low-, mid-, and high-weight groups, respectively, R2 = 0.978). Given the difficulty encountered with intubation of 10-day old pups and the associated high mortality, we recommend cardiothoracic surgery in 10-day-old pups be restricted to pups weighing at least 5.5 g.


Asunto(s)
Anestesia , Isoflurano , Ketamina , Animales , Derivados de Atropina , Peso Corporal , Intubación Intratraqueal , Ratones , Ratones Endogámicos C57BL , Oxígeno , Xilazina
10.
Cell Death Dis ; 12(3): 234, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664222

RESUMEN

Wnt signaling plays a major role in early neural development. An aberrant activation in Wnt/ß-catenin pathway causes defective anteroposterior patterning, which results in neural tube closure defects (NTDs). Changes in folate metabolism may participate in early embryo fate determination. We have identified that folate deficiency activated Wnt/ß-catenin pathway by upregulating a chorion-specific transcription factor Gcm1. Specifically, folate deficiency promoted formation of the Gcm1/ß-catenin/T-cell factor (TCF4) complex formation to regulate the Wnt targeted gene transactivation through Wnt-responsive elements. Moreover, the transcription factor Nanog upregulated Gcm1 transcription in mESCs under folate deficiency. Lastly, in NTDs mouse models and low-folate NTDs human brain samples, Gcm1 and Wnt/ß-catenin targeted genes related to neural tube closure are specifically overexpressed. These results indicated that low-folate level promoted Wnt/ß-catenin signaling via activating Gcm1, and thus leaded into aberrant vertebrate neural development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Deficiencia de Ácido Fólico/metabolismo , Defectos del Tubo Neural/metabolismo , Tubo Neural/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Deficiencia de Ácido Fólico/complicaciones , Deficiencia de Ácido Fólico/genética , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Tubo Neural/anomalías , Defectos del Tubo Neural/etiología , Defectos del Tubo Neural/genética , Embarazo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Factores de Transcripción/genética
11.
Int J Neurosci ; 131(5): 468-477, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32241207

RESUMEN

OBJECTIVE: Neural tube defects (NTDs) are one of the most common and serious birth defects in human beings caused by genetic and environmental factors. Folate insufficiency is involved in the occurrence of NTDs and folic acid supplementation can prevent NTDs occurrence, however, the underlying mechanism remains poorly understood. METHODS: We established cell and animal models of folic acid deficiency to detect the methylation modification and expression levels of genes by MassARRAY and real-time PCR, respectively. Results and conclusion: In the present study, we found firstly that in human folic acid-insufficient NTDs, the methylation level of imprinted gene Mest/Peg1 was decreased. By using a folic acid-deficient cell model, we demonstrated that Mest/Peg1 methylation was descended. Meanwhile, the mRNA level of Mest/Peg1 was up-regulated via hypomethylation modification under low folic acid conditions. Consistent with the results in cell models, Mest/Peg1 expression was elevated through hypomethylation regulation in folate-deficient animal models. Furthermore, the up-regulation of Mest/Peg1 inhibited the expression of Lrp6 gene, a crucial component of Wnt pathway. Similar results with Lrp6 down-regulation of fetal brain were verified in animal models under folic acid-deficient condition. Taken together, our findings indicated folic acid increased the expression of Mest/Peg1 via hypomethylation modification, and then inhibited Lrp6 expression, which may ultimately impact on the development of nervous system through the inactivation of Wnt pathway.


Asunto(s)
Encéfalo/metabolismo , Deficiencia de Ácido Fólico/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Defectos del Tubo Neural/metabolismo , Proteínas/metabolismo , Vía de Señalización Wnt/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Feto , Deficiencia de Ácido Fólico/complicaciones , Regulación de la Expresión Génica , Humanos , Metilación , Ratones , Ratones Endogámicos C57BL , Defectos del Tubo Neural/etiología
12.
Front Bioeng Biotechnol ; 9: 807883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004657

RESUMEN

Intervertebral disc degeneration (IDD) is the pathological basis of disc degenerative diseases (DDD). Reduction in the number of cells and degeneration of the extracellular matrix (ECM) in the nucleus pulposus (NP) are characteristics of IDD. Bio-hydrogel combined with stem cell transplantation is a promising treatment. Injectable ECM hydrogels have good biological activity and in-situ gelatinization. However, its biomechanics and stability are insufficient to provide adequate mechanical support for intervertebral discs and to maintain the long-term differential stimulus for seeded stem cells. In our study, we developed genipin cross-linked decellularized nucleus pulposus hydrogel (GDH) as delivery system. We evaluated the mechanical properties, stability, biocompatibility, and differentiation induction of GDH cross-linked with different concentrations of genipin in vitro. The GDH-loaded adipose-derived mesenchymal stem cells (ADSCs) (GDHA) were injected into the rat degenerated coccygeal intervertebral disc. The effect of intervertebral disc regeneration in vivo was evaluated. The results showed that GDH with 0.02% of genipin had similar elastic modulus to human nucleus pulposus, good biocompatibility, and inducibility of expressing NP-related genes. In vivo studies showed that GDHA improved the survival of ADSCs and improved the intervertebral height, MRI index, and histological grading score. In conclusion, GDH, as an outstanding bio-hydrogel cell delivery system, has the therapeutic potential for retarding IDD.

13.
Sci Rep ; 10(1): 15318, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948799

RESUMEN

Animal models of pressure overload are valuable for understanding hypertensive heart disease. We characterised a surgical model of pressure overload-induced hypertrophy in C57BL/6J mice produced by suprarenal aortic constriction (SAC). Compared to sham controls, at one week post-SAC systolic blood pressure was significantly elevated and left ventricular (LV) hypertrophy was evident by a 50% increase in the LV weight-to-tibia length ratio due to cardiomyocyte hypertrophy. As a result, LV end-diastolic wall thickness-to-chamber radius (h/R) ratio increased, consistent with the development of concentric hypertrophy. LV wall thickening was not sufficient to normalise LV wall stress, which also increased, resulting in LV systolic dysfunction with reductions in ejection fraction and fractional shortening, but no evidence of heart failure. Pathological LV remodelling was evident by the re-expression of fetal genes and coronary artery perivascular fibrosis, with ischaemia indicated by enhanced cardiomyocyte Hif1a expression. The expression of stem cell factor receptor, c-Kit, was low basally in cardiomyocytes and did not change following the development of robust hypertrophy, suggesting there is no role for cardiomyocyte c-Kit signalling in pathological LV remodelling following pressure overload.


Asunto(s)
Hipertrofia Ventricular Izquierda/patología , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Animales , Aorta/fisiopatología , Constricción Patológica , Regulación de la Expresión Génica , Hipertensión/etiología , Hipertensión/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Presión , Proteínas Proto-Oncogénicas c-kit/genética , Circulación Renal , Renina/genética , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular/genética , Remodelación Ventricular/fisiología
14.
Int J Hyperthermia ; 37(1): 624-633, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32525724

RESUMEN

Background: Transcatheter arterial chemoembolization (TACE), radiofrequency ablation (RFA), and microwave ablation (MWA) are regarded as effective therapies for treating unresectable hepatocellular carcinoma (HCC). We conducted this study to compare the efficiency and safety of TACE combined with RFA (TR group) or MWA (TM group).Method: PubMed, the Cochrane Library, Ovid Medline, Web of Science, Scopus, Embase, ScienceDirect, and Google Scholar were searched. The primary endpoints were overall survival (OS), progression-free survival (PFS), response rates, and complications.Result: Eight cohort studies and one randomized controlled trial were included. The TM group had better OS (Hazard ratio [HR]: 1.55; 95% confidence interval [CI]: 1.09-2.21, p = 0.01) and a better 2- and 3-year OS rate, 24-month PFS rate (Risk ratio [RR]: 0.67; 95% CI: 0.46-0.96, p = 0.03), and complete response rate (RR: 0.87; 95% CI: 0.79-0.96, p = 0.003) than the TR group. Furthermore, the TM and TR groups did not show significant differences in PFS, the disease control rate or complications. The advantage of TM was mainly reflected in younger patients (50-60 years old) compared with patients aged 60-70 years, as well as in patients with larger tumors (≥3 cm) compared with patients with tumors <3 cm. Moreover, patients treated with conventional TACE (cTACE) in the TM group showed longer OS, while patients treated with drug-eluting bead transarterial chemoembolization (DEB-TACE) in the TR group showed a higher overall response rate.Conclusion: TM seems to be a more effective therapy than TR for unresectable HCC, with better survival and similar safety.


Asunto(s)
Carcinoma Hepatocelular , Ablación por Catéter , Quimioembolización Terapéutica , Neoplasias Hepáticas , Ablación por Radiofrecuencia , Carcinoma Hepatocelular/cirugía , Humanos , Neoplasias Hepáticas/cirugía , Microondas/uso terapéutico , Persona de Mediana Edad , Resultado del Tratamiento
15.
Epigenetics Chromatin ; 12(1): 76, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856916

RESUMEN

BACKGROUND: Neural tube defects (NTDs) are severe, common birth defects that result from failure of normal neural tube closure during early embryogenesis. Accumulating strong evidence indicates that genetic factors contribute to NTDs etiology, among them, HOX genes play a key role in neural tube closure. Although abnormal HOX gene expression can lead to NTDs, the underlying pathological mechanisms have not fully been understood. METHOD: We detected that H3K27me3 and expression of the Hox genes in a retinoic acid (RA) induced mouse NTDs model on E8.5, E9.5 and E10.5 using RNA-sequencing and chromatin immunoprecipitation sequencing assays. Furthermore, we quantified 10 Hox genes using NanoString nCounter in brain tissue of fetuses with 39 NTDs patients including anencephaly, spina bifida, hydrocephaly and encephalocele. RESULTS: Here, our results showed differential expression in 26 genes with a > 20-fold change in the level of expression, including 10 upregulated Hox genes. RT-qPCR revealed that these 10 Hox genes were all upregulated in RA-induced mouse NTDs as well as RA-treated embryonic stem cells (ESCs). Using ChIP-seq assays, we demonstrate that a decrease in H3K27me3 level upregulates the expression of Hox cluster A-D in RA-induced mouse NTDs model on E10.5. Interestingly, RA treatment led to attenuation of H3K27me3 due to cooperate between UTX and Suz12, affecting Hox gene regulation. Further analysis, in human anencephaly cases, upregulation of 10 HOX genes was observed, along with aberrant levels of H3K27me3. Notably, HOXB4, HOXC4 and HOXD1 expression was negatively correlated with H3K27me3 levels. CONCLUSION: Our results indicate that abnormal HOX gene expression induced by aberrant H3K27me3 levels may be a risk factor for NTDs and highlight the need for further analysis of genome-wide epigenetic modification in NTDs.


Asunto(s)
Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Defectos del Tubo Neural/patología , Anencefalia/metabolismo , Anencefalia/patología , Animales , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Defectos del Tubo Neural/inducido químicamente , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Tretinoina/toxicidad , Regulación hacia Arriba/efectos de los fármacos
16.
Epigenetics Chromatin ; 12(1): 69, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31722724

RESUMEN

BACKGROUND: Neural tube defects (NTDs) are common congenital malformations resulting in failure of the neural tube closure during early embryonic development. Although it is known that maternal folate deficiency increases the risk of NTDs, the mechanism remains elusive. RESULTS: Herein, we report that histone H2A monoubiquitination (H2AK119ub1) plays a role in neural tube closure. We found that the folate antagonist methotrexate induced H2AK119ub1 in mouse embryonic stem cells. We demonstrated that an increase in H2AK119ub1 downregulated expression of the neural tube closure-related genes Cdx2, Nes, Pax6, and Gata4 in mouse embryonic stem cells under folate deficiency conditions. We also determined that the E3 ligase Mdm2 was responsible for the methotrexate-induced increase in H2AK119ub1 and downregulation of neural tube closure-related genes. Surprisingly, we found that Mdm2 is required for MTX-induced H2A ubiquitination and is recruited to the sites of DSB, which is dependent on DNA damage signaling kinase ATM. Furthermore, folic acid supplementation restored H2AK119ub1 binding to neural tube closure-related genes. Downregulation of these genes was also observed in both brain tissue of mouse and human NTD cases, and high levels of H2AK119ub1 were found in the corresponding NTDs samples with their maternal serum folate under low levels. Pearson correlation analysis showed a significant negative correlation between expression of the neural precursor genes and H2AK119ub1. CONCLUSION: Our results indicate that folate deficiency contributes to the onset of NTDs by altering H2AK119ub1 and subsequently affecting expression of neural tube closure-related genes. This may be a potential risk factor for NTDs in response to folate deficiency.


Asunto(s)
Regulación hacia Abajo , Histonas/metabolismo , Defectos del Tubo Neural/patología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Daño del ADN , Regulación hacia Abajo/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Ácido Fólico/metabolismo , Ácido Fólico/farmacología , Ácido Fólico/uso terapéutico , Metotrexato/farmacología , Ratones , Ratones Endogámicos C57BL , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/prevención & control , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ubiquitinación
17.
Cell Metab ; 30(4): 675-688.e7, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31543403

RESUMEN

The underlying etiology of nonalcoholic fatty liver disease (NAFLD) is believed to be quite varied. Changes in the gut microbiota have been investigated and are believed to contribute to at least some cases of the disease, though a causal relationship remains unclear. Here, we show that high-alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) is associated with up to 60% of individuals with NAFLD in a Chinese cohort. Transfer of clinical isolates of HiAlc Kpn by oral gavage into mice induced NAFLD. Likewise, fecal microbiota transplant (FMT) into mice using a HiAlc-Kpn-strain-containing microbiota isolated from an individual with NASH induced NAFLD. However, selective elimination of the HiAlc Kpn strain before FMT prevented NAFLD in the recipient mice. These results suggest that at least in some cases of NAFLD an alteration in the gut microbiome drives the condition due to excess endogenous alcohol production.


Asunto(s)
Etanol/metabolismo , Microbioma Gastrointestinal , Klebsiella pneumoniae/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Animales , Trasplante de Microbiota Fecal , Células Hep G2 , Humanos , Klebsiella pneumoniae/patogenicidad , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Cell Death Dis ; 10(8): 551, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320612

RESUMEN

Retinoic acid (RA), an active derivative of vitamin A, is critical for the neural system development. During the neural development, the RA/RA receptor (RAR) pathway suppresses BMP signaling-mediated proliferation and differentiation of neural progenitor cells. However, how the stability of RAR is regulated during neural system development and how BMP pathway genes expression in neural tissue from human fetuses affected with neural tube defects (NTDs) remain elusive. Here, we report that FBXO30 acts as an E3 ubiquitin ligase and targets RARγ for ubiquitination and proteasomal degradation. In this way, FBXO30 positively regulates BMP signaling in mammalian cells. Moreover, RA treatment leads to suppression of BMP signaling by reducing the level of FBXO30 in mammalian cells and in mouse embryos with NTDs. In samples from human NTDs with high levels of retinol, downregulation of BMP target genes was observed, along with aberrant FBXO30 levels. Collectively, our results demonstrate that RARγ levels are controlled by FBXO30-mediated ubiquitination and that FBXO30 is a key regulator of BMP signaling. Furthermore, we suggest a novel mechanism by which high-retinol levels affect the level of FBXO30, which antagonizes BMP signaling during early stage development.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Proteínas F-Box/metabolismo , Defectos del Tubo Neural/metabolismo , Receptores de Ácido Retinoico/metabolismo , Animales , Proteína Morfogenética Ósea 2/antagonistas & inhibidores , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/farmacología , Modelos Animales de Enfermedad , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Proteínas F-Box/genética , Femenino , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Células HEK293 , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/genética , Unión Proteica , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/genética , Transducción de Señal/genética , Tretinoina/farmacología , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , Receptor de Ácido Retinoico gamma
19.
BMC Cancer ; 19(1): 405, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035970

RESUMEN

BACKGROUND: Wilms' tumor is also called nephroblastoma and is the most common pediatric renal cancer. Several genetic and epigenetic factors have been found to account for the development of Wilms' tumor. MiRNAs play important roles in this tumorigenic process. In the present study, we aimed to investigate the role of miR-140-5p in nephroblastoma by identifying its targets, as well as its underlying molecular mechanism of action. METHODS: The miRNA expression profile of nephroblastoma samples was investigated and the targets of miR-140-5p were predicted and validated using the miRNA luciferase reporter method. Moreover, the roles of miR-140-5p in regulating nephroblastoma cell proliferation, migration and cell cycle were analyzed by the CCK8, migration and flow cytometry assays, respectively. The downstream protein of the direct target of miR-140-5p was also identified. RESULTS: miR-140-5p was downregulated in Wilms' tumor tissues, whereas in the nephroblastoma cell lines G401 and WT-CLS1 that exhibited high levels of miRNA-140-5p, inhibition of cellular proliferation and metastasis were noted as well as cell cycle arrest at the G1/S phase. TGFBRI and IGF1R were identified as direct target genes for miRNA-140-5p. In addition, SMAD2/3 and p-AKT were regulated by TGFBRI and IGF1R separately and participated in the miRNA-140-5p regulatory network. Ectopic expression of TGFBR1 and IGF-1R could abrogate the inhibitory effect of miR-140-5p. CONCLUSION: We demonstrated that miRNA-140-5p participates in the progression of Wilms' tumor by targeting the TGFBRI/SMAD2/3 and the IGF-1R/AKT signaling pathways.


Asunto(s)
Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Transducción de Señal/genética , Tumor de Wilms/genética , Línea Celular Tumoral , Movimiento Celular/genética , Niño , Progresión de la Enfermedad , Regulación hacia Abajo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1 , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Tumor de Wilms/metabolismo , Tumor de Wilms/patología
20.
Epigenetics Chromatin ; 12(1): 22, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992047

RESUMEN

BACKGROUND: Neural tube defects (NTDs) are common birth defects involving the central nervous system. Recent studies on the etiology of human NTDs have raised the possibility that epigenetic regulation could be involved in determining susceptibility to them. RESULTS: Here, we show that the H2AK119ub1 E3 ligase CUL4B is required for the activation of retinoic acid (RA)-inducible developmentally critical homeobox (HOX) genes in NT2/D1 embryonal carcinoma cells. RA treatment led to attenuation of H2AK119ub1 due to decrease in CUL4B, further affecting HOX gene regulation. Furthermore, we found that CUL4B interacted directly with RORγ and negatively regulated its transcriptional activity. Interestingly, knockdown of RORγ decreased the expression of HOX genes along with increased H2AK119ub1 occupancy levels, at HOX gene sites in N2/D1 cells. In addition, upregulation of HOX genes was observed along with lower levels of CUL4B-mediated H2AK119ub1 in both mouse and human anencephaly NTD cases. Notably, the expression of HOXA10 genes was negatively correlated with CUL4B levels in human anencephaly NTD cases. CONCLUSIONS: Our results indicate that abnormal HOX gene expression induced by aberrant CUL4B-mediated H2AK119ub1 levels may be a risk factor for NTDs, and highlight the need for further analysis of genome-wide epigenetic modifications in NTDs.


Asunto(s)
Anencefalia/genética , Proteínas Cullin/genética , Código de Histonas , Histonas/metabolismo , Proteínas de Homeodominio/genética , Ubiquitinación , Animales , Línea Celular , Línea Celular Tumoral , Proteínas Cullin/metabolismo , Histonas/genética , Proteínas Homeobox A10 , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA