Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Arch Dermatol Res ; 316(6): 299, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819446

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is a malignant tumor originating from epidermal or appendageal keratinocytes, with a rising incidence in recent years. Understanding the molecular mechanism driving its development is crucial. This study aims to investigate whether miR-34a-5p is involved in the pathogenesis of cSCC by targeting Sirtuin 6 (SIRT6).The expression levels of miR-34a-5p and SIRT6 were determined in 15 cSCC tissue specimens, 15 normal tissue specimens and cultured cells via real-time polymerase chain reaction (RT-qPCR). Pearson's correlation analysis was conducted to evaluate the relationship between miR-34a-5p and SIRT6 expression levels in cSCC tissues. A431 and SCL-1 cells were transfected with miR-34a-5p mimic, negative control or miR-34a-5p mimic together with recombinant plasmids containing SIRT6 gene. Cell counting kit-8, clone formation assay, wound healing assay, and flow cytometry were employed to assess the effects of these transfections on proliferation, migration, and apoptosis, respectively. The interaction between miR-34a-5p and SIRT6 was characterized using a dual-luciferase reporter assay.MiR-34a-5p expression was down-regulated in cSCC tissues significantly, while the SIRT6 expression was the opposite. A negative correlation was observed between the expression of miR-34a-5p and SIRT6 in cSCC tissues. Furthermore, overexpression of miR-34a-5p led to a significant reduction in the proliferation and migration abilities of A431 and SCL-1 cells, accompanied by an increase in apoptosis levels and a decrease in SIRT6 expression levels. MiR-34a-5p was identified as a direct target of SIRT6. Importantly, overexpression of SIRT6 effectively counteracted the inhibitory effect mediated by miR-34a-5p in cSCC cells.Our findings suggest that miR-34a-5p functions as a tumor suppressor in cSCC cells by targeting SIRT6.


Asunto(s)
Apoptosis , Carcinoma de Células Escamosas , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs , Sirtuinas , Neoplasias Cutáneas , Humanos , Sirtuinas/genética , Sirtuinas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Masculino , Regulación hacia Abajo , Femenino , Persona de Mediana Edad
2.
World J Gastrointest Surg ; 16(3): 717-730, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38577067

RESUMEN

BACKGROUND: Due to the complexity and numerous comorbidities associated with Crohn's disease (CD), the incidence of postoperative complications is high, significantly impacting the recovery and prognosis of patients. Consequently, additional studies are required to precisely predict short-term major complications following intestinal resection (IR), aiding surgical decision-making and optimizing patient care. AIM: To construct novel models based on machine learning (ML) to predict short-term major postoperative complications in patients with CD following IR. METHODS: A retrospective analysis was performed on clinical data derived from a patient cohort that underwent IR for CD from January 2017 to December 2022. The study participants were randomly allocated to either a training cohort or a validation cohort. The logistic regression and random forest (RF) were applied to construct models in the training cohort, with model discrimination evaluated using the area under the curves (AUC). The validation cohort assessed the performance of the constructed models. RESULTS: Out of the 259 patients encompassed in the study, 5.0% encountered major postoperative complications (Clavien-Dindo ≥ III) within 30 d following IR for CD. The AUC for the logistic model was 0.916, significantly lower than the AUC of 0.965 for the RF model. The logistic model incorporated a preoperative CD activity index (CDAI) of ≥ 220, a diminished preoperative serum albumin level, conversion to laparotomy surgery, and an extended operation time. A nomogram for the logistic model was plotted. Except for the surgical approach, the other three variables ranked among the top four important variables in the novel ML model. CONCLUSION: Both the nomogram and RF exhibited good performance in predicting short-term major postoperative complications in patients with CD, with the RF model showing more superiority. A preoperative CDAI of ≥ 220, a diminished preoperative serum albumin level, and an extended operation time might be the most crucial variables. The findings of this study can assist clinicians in identifying patients at a higher risk for complications and offering personalized perioperative management to enhance patient outcomes.

4.
Crit Rev Microbiol ; : 1-10, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37671830

RESUMEN

Intestinal inflammation modifies host physiology to promote the occurrence of colorectal cancer (CRC), as seen in colitis-associated CRC. Gut microbiota is crucial in cancer progression, primarily by inducing intestinal chronic inflammatory microenvironment, leading to DNA damage, chromosomal mutation, and alterations in specific metabolite production. Therefore, there is an increasing interest in microbiota-based prevention and treatment strategies, such as probiotics, prebiotics, microbiota-derived metabolites, and fecal microbiota transplantation. This review aims to provide valuable insights into the potential correlations between gut microbiota and colitis-associated CRC, as well as the promising microbiota-based strategies for colitis-associated CRC.

5.
Cell Death Dis ; 14(3): 229, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002201

RESUMEN

Re-expression of an embryonic morphogen, Nodal, has been seen in several types of malignant tumours. By far, studies about Nodal's role in colorectal cancer (CRC) remain limited. Ferroptosis is essential for CRC progression, which is caused by cellular redox imbalance and characterized by lipid peroxidation. Herein, we observed that Nodal enhanced CRC cell's proliferative rate, motility, invasiveness, and epithelial-mesenchymal transition (EMT) in vivo and in vitro. Notably, Nodal overexpression induced monounsaturated fatty acids synthesis and increased the lipid unsaturation level. Nodal knockdown resulted in increased CRC cell lipid peroxidation. Stearoyl-coenzyme A desaturase 1 (SCD1) inhibition at least partially abolished the resistance of Nodal-overexpressing cells to RSL3-induced ferroptosis. Mechanistically, SCD1 was transcriptionally up-regulated by Smad2/3 pathway activation in response to Nodal overexpression. Significant Nodal and SCD1 up-regulation were observed in CRC tissues and were associated with CRC metastasis and poor clinical outcomes. Furthermore, bovine serum albumin nanoparticles/si-Nodal nanocomplexes targeting Nodal had anti-tumour effects on CRC progression and metastasis. This research elucidated the role of Nodal in CRC development and revealed a potential gene-based therapeutic strategy targeting Nodal for improving CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Humanos , Ferroptosis/genética , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Estearoil-CoA Desaturasa/genética
6.
Front Oncol ; 12: 910264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912179

RESUMEN

Clinically rare, multiple primary tumors are a growth or development of two or more neoplasms in the same individual. A 57-year-old woman with two primary cancers, namely, breast and gastric cancers, and a gastrointestinal stromal tumor was admitted. Next-generation sequencing (NGS) of the three tumors and blood was performed to determine their clonal origin and identify genetic cancer susceptibility. NGS identified that germline genetic variants potentially correlated with an individual risk of developing multiple cancers and that additional mutations are required to drive the formation of different tumors.

7.
Cell Death Dis ; 13(7): 624, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853880

RESUMEN

Prostate cancer (PCa) is a malignant tumor that seriously threatens men's health worldwide. Recently, stromal cells in the tumor microenvironment (TME) have been reported to contribute to the progression of PCa. However, the role and mechanism of how PCa cells interact with stromal cells to reshape the TME remain largely unknown. Here, using a spontaneous prostate adenocarcinoma (PRAD) model driven by the loss of Pten and Hic1, we found that M2 macrophages markedly infiltrated the stroma of Pten and Hic1 double conditional knockout (dCKO) mice compared with those in control (Ctrl) mice due to higher TGF-ß levels secreted by HIC1-deleted PCa cells. Mechanistically, TGF-ß in TME promoted the polarization of macrophages into "M2" status by activating the STAT3 pathway and modulating c-Myc to upregulate CXCR4 expression. Meanwhile, TGF-ß activated the fibroblasts to form cancer-associated fibroblasts (CAFs) that secrete higher CXCL12 levels, which bound to its cognate receptor CXCR4 on M2 macrophages. Upon interaction with CAFs, M2 macrophages secreted more CXCL5, which promoted the epithelial-mesenchymal transition (EMT) of PCa via CXCR2. Moreover, using the TGF-ß receptor I antagonist, galunisertib, significantly inhibited the tumor growth and progression of the TRAMP-C1 cell line-derived subcutaneous tumor model. Finally, we confirmed that the stromal microenvironment was shaped by TGF-ß in HIC1-deficient PCa and was associated with the progression of PCa.


Asunto(s)
Fibroblastos Asociados al Cáncer , Factores de Transcripción de Tipo Kruppel , Neoplasias de la Próstata , Factor de Crecimiento Transformador beta , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral
8.
Front Med (Lausanne) ; 9: 895202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572975

RESUMEN

Intestinal obstruction is one of the most common complications of Crohn's disease (CD), jeopardizing the quality of life of patients. Numerous factors may contribute to intestinal obstruction in CD. Thus far, the primary reason has been identified as intestinal fibrosis caused by repeated chronic inflammation during the active phase of CD. Herein, we report two rare complicated CD cases and provide a reference for the clinical diagnosis and treatment of similar patients. Case one involves capsule endoscope retention in the small intestine of one CD patient concurrent with intestinal obstruction. Case two is a CD patient with intestinal obstruction caused by a mesangial hernia and ileal stenosis. Individualized and minimally invasive surgical intervention ultimately resulted in the successful management of these two patients. The two cases serve as an excellent guide for diagnosing and treating CD patients who present with similar symptoms.

9.
Front Cell Infect Microbiol ; 12: 864944, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493739

RESUMEN

Background: Crohn's disease (CD) is a chronic nonspecific inflammatory bowel disease (IBD) with an increasing incidence worldwide. The etiology of CD is still obscure, but microbial dysbiosis has been recognized as an essential factor contributing to CD. However, few studies have revealed the microbiome's signatures and reciprocal correlations between multiple sites in patients with CD over different disease stages. This study investigated the specific microbial architectures of the oral cavity, sputum, and ileum in patients with CD in the active and remission stages. Methods: Microbial samples from the oral cavity, sputum, and ileum were collected from patients with CD in the active and remission stages and healthy controls. The microbial composition was assessed by 16S ribosomal RNA (rRNA) gene sequencing. In addition, bioinformatics methods were used to demonstrate the microbial signatures, functional changes, and correlations between microbiota and clinical data in CD. Results: Compared with healthy controls, a distinct microbiota dysbiosis in the oral cavity, sputum, and ileum of patients with CD was identified, characterized by alterations in microbiota biodiversity and composition. The oral cavity and sputum microbiota showed significantly lower microbial diversity in patients with CD than in healthy controls. In terms of microbiota composition, the microbiota changes in the oral cavity of patients with CD were similar to those in the sputum, while they were different from those in the ileum. In the oral cavity and sputum of patients with CD, a lower relative abundance of Firmicutes and Actinobacteria was observed compared to healthy controls, which was most prominent in the active stage. In contrast, an increased relative abundance of Fusobacteria, Porphyromonas, and Haemophilus was observed in patients with CD. The predicted metabolic pathways involved in the oral cavity, sputum, and ileum were similar, predominantly involving metabolism, environmental information processing, and genetic information processing. Conclusion: The results revealed the alterations of microbiota architecture in the oral cavity, sputum, and ileum of patients with CD, which varied across disease stages. Studying microbiota dysbiosis may bring new insights into the etiology of CD and lead to novel treatments.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Microbiota , Enfermedad de Crohn/microbiología , Disbiosis/microbiología , Microbioma Gastrointestinal/genética , Humanos , Íleon , Microbiota/genética , Boca , ARN Ribosómico 16S/genética , Esputo
10.
Cell Death Discov ; 8(1): 92, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236829

RESUMEN

Triple-negative breast cancer (TNBC) is known as a highly aggressive subtype of BC due to high rate of recurrence and metastasis, poor prognosis and lacking of effective targeted therapies. Circular RNAs (circRNAs) have been reported to participate in the progression of TNBC. In this study, we demonstrated that circPRKCI, derived from the PRKCI gene, was elevated in BC tissues and cell lines, especially in TNBC. The functional investigation showed that circPRKCI could significantly promote the proliferation and migration of TNBC in vivo and in vitro. In addition, circPRKCI regulated WBP2 and the phosphorylation of AKT via serving as miR-545-3p sponge. Of note, EIF4A3 could induce circPRKCI expression and nuclear export in TNBC cells. Taken together, EIF4A3-mediated circPRKCI could promote TNBC progression by regulating WBP2 and PI3K/AKT signaling pathway, providing a new avenue of therapy for TNBC.

11.
Pathol Res Pract ; 230: 153763, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35026645

RESUMEN

Breast cancer (BC) ranks as the highest incidence among cancer types in women all over the world. Triple-negative breast cancer (TNBC) is known as a highly aggressive subtype of BC due to high rate of recurrence and metastasis, poor prognosis and lacking of effective targeted therapies. MicroRNAs (miRNAs) are a class of short endogenous non-coding RNA that mostly functioning to silence the target mRNAs. In this study, we found miR-181c-5p (miR-181c) was down-expressed in TNBC tissues and cell lines, whereas MAP4K4 was highly-expressed. Up-regulation of miR-181c inhibited TNBC cells proliferation and migration, promoted TNBC cells apoptosis and regulated the cell cycle by arresting cells in the G0/G1 cell phase, while depletion of miR-181c showed opposite effect. Importantly, miR-181c suppressed MAP4K4 expression at both mRNA and protein levels by directly targeting MAP4K4, thereby inhibiting the tumor-promoting effect of MAP4K4. This study is the first to demonstrate the miR-181c/MAP4K4 signaling in suppressing TNBC, providing a novel therapeutic target for TNBC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/enzimología , Apoptosis , Puntos de Control del Ciclo Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células MCF-7 , MicroARNs/genética , Invasividad Neoplásica , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
12.
Biomed Res Int ; 2022: 6589651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35097124

RESUMEN

Breast cancer is the most common cancer among females. Dachshund Homolog 1 (DACH1) gene is regarded as an important tumor suppressor gene in breast cancer which plays an important regulatory role in the development disease progression, particularly in carcinomas. Circular RNAs (circRNAs) and microRNA (miRNA), regarded as a novel group of noncoding RNAs, are always involved in regulating gene expression. In this work, hsa_circ_0047604 expressed lower in breast cancer tissue and played the role of sponge of miR-548o. By this way, hsa_circ_0047604 could upregulate DACH1 to inhibit breast cancer. In conclusion, this study revealed that hsa_circ_0047604 acted as a tumor suppressor and regulated breast cancer progression via hsa_circ_0047604-miR-548o-DACH1 axis, which might provide a therapeutic method for breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Circular , Factores de Transcripción , Neoplasias de la Mama/patología , Proliferación Celular/genética , Proteínas del Ojo/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , MicroARNs/genética , ARN Circular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
World J Gastrointest Surg ; 13(11): 1414-1422, 2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34950430

RESUMEN

BACKGROUND: Although minimally invasive surgery is becoming more commonly applied for ileostomy reversal (IR), there have been relatively few studies of IR for patients with Crohn's disease (CD). It is therefore important to evaluate the potential benefits and risks of laparoscopy for patients with CD. AIM: To compare the safety, feasibility, and short-term and long-term outcomes of laparoscopic IR (LIR) vs open IR (OIR) for the treatment of CD. METHODS: The baseline characteristics, operative data, and short-term (30-d) and long-term outcomes of patients with CD who underwent LIR and OIR at our institution between January 2017 and January 2020 were retrieved from an electronic database and retrospectively reviewed. RESULTS: Of the 60 patients enrolled in this study, LIR was performed for 48 and OIR for 12. There were no statistically significant differences in baseline characteristics, operation time, intraoperative blood loss, days to flatus and soft diet, postoperative complications, hospitalization time, readmission rate within 30 d, length of hospitalization, hospitalization costs, or reoperation rate after IR between the two groups. However, patients in the LIR group more frequently required lysis of adhesions as compared to those in the OIR group (87.5% vs 41.7%, respectively, P < 0.05). Notably, following exclusion of patients who underwent enterectomy plus IR, OIR was more advantageous in terms of postoperative recovery of gastrointestinal function and hospitalization costs. CONCLUSION: The safety and feasibility of LIR for the treatment of CD are comparable to those of OIR with no increase in intraoperative or postoperative complications.

14.
Transl Androl Urol ; 10(7): 3056-3068, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34430408

RESUMEN

BACKGROUND: Alternative splicing (AS) is believed to play a vital role in tumor development. Therefore, comprehensive investigation of AS and its biological function in prostate cancer (PCa) is crucial. METHODS: The AS profiling of 489 patients with PCa was obtained from The Cancer Genome Atlas (TCGA) SpliceSeq database. Bioinformatics tools were used to describe splicing associations and build prognostic models. Unsupervised clustering of the determined prognostic AS events and the relationship with immune characteristics were also explored. RESULTS: In total, 20,723 AS events were detected and 2,805 were identified in PCa. In the regulatory networks, the data suggested a significant correlation between splicing factor (SF) expression and AS events. To stratify the progression risk of PCa patients, prognostic models were constructed using splicing patterns. Six AS events were screened out as independent prognostic factors for progression-free survival. Based on the gene features, we constructed the combined prognostic predictors model, and the receiver operating characteristic (ROC) curve for this model reached a high area under the ROC curve (AUC) of 0.729793, indicating a favorable ability to predict patient outcomes. Through unsupervised clustering analysis, the correlations between AS-based clusters and prognosis as well as immune characteristics were revealed. The correlation analysis on TIMER revealed the relationship between gene expression and immune cell infiltration. CONCLUSIONS: This in-depth genome-wide analysis of the AS profiling in PCa revealed unique AS events associated with cancer progression and the infiltration of immune cells, with potential for predicting outcomes and therapeutic responses.

15.
Oncogenesis ; 10(1): 4, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33419984

RESUMEN

Exploring novel anticancer drugs to optimize the efficacy may provide a benefit for the treatment of colorectal cancer (CRC). Disulfiram (DSF), as an antialcoholism drug, is metabolized into diethyldithiocarbamate-copper complex (CuET) in vivo, which has been reported to exert the anticancer effects on various tumors in preclinical studies. However, little is known about whether CuET plays an anti-cancer role in CRC. In this study, we found that CuET had a marked effect on suppressing CRC progression both in vitro and in vivo by reducing glucose metabolism. Mechanistically, using RNA-seq analysis, we identified ALDH1A3 as a target gene of CuET, which promoted cell viability and the capacity of clonal formation and inhibited apoptosis in CRC cells. MicroRNA (miR)-16-5p and 15b-5p were shown to synergistically regulate ALDH1A3, which was negatively correlated with both of them and inversely correlated with the survival of CRC patients. Notably, using co-immunoprecipitation followed with mass spectrometry assays, we identified PKM2 as a direct downstream effector of ALDH1A3 that stabilized PKM2 by reducing ubiquitination. Taken together, we disclose that CuET treatment plays an active role in inhibiting CRC progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis-mediated aerobic glycolysis pathway.

16.
Cell Death Dis ; 11(8): 638, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32801300

RESUMEN

The development of prostate cancer (PCa) from androgen-deprivation therapy (ADT) sensitive to castration resistant (CRPC) seriously impacts life quality and survival of PCa patients. Emerging evidence shows that long noncoding RNAs (lncRNAs) play vital roles in cancer initiation and progression. However, the inherited mechanisms of how lncRNAs participate in PCa progression and treatment resistance remain unclear. Here, we found that a long noncoding RNA LINC00675 was upregulated in androgen-insensitive PCa cell lines and CRPC patients, which promoted PCa progression both in vitro and in vivo. Knockdown of LINC00675 markedly suppressed tumor formation and attenuated enzalutamide resistance of PCa cells. Mechanistically, LINC00675 could directly modulate androgen receptor's (AR) interaction with mouse double minute-2 (MDM2) and block AR's ubiquitination by binding to it. Meanwhile, LINC00675 could bind to GATA2 mRNA and stabilize its expression level, in which GATA2 could act as a co-activator in the AR signaling pathway. Notably, we treated subcutaneous xenografts models with enzalutamide and antisense oligonucleotides (ASO) targeting LINC00675 in vivo and found that targeting LINC00675 would benefit androgen-deprivation-insensitive models. Our findings disclose that the LINC00675/MDM2/GATA2/AR signaling axis is a potential therapeutic target for CRPC patients.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/genética , ARN Largo no Codificante/genética , Receptores Androgénicos/genética , Antagonistas de Andrógenos/farmacología , Andrógenos/metabolismo , Animales , Benzamidas , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética
17.
Biomed Res Int ; 2020: 7907269, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32420372

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtypes of breast cancer, which has few effective targeted therapies. Various sources of evidence confirm that microRNAs (miRNAs) contribute to the progression and metastasis of human breast cancer. However, the molecular mechanisms underlying the changes in miRNAs expression and the regulation of miRNAs functions have not been well clarified. In this study, we found that the expression of miR-30b-5p was upregulated in breast cancer tissues and breast cancer cell lines, compared to paracancer tissues and normal breast cell lines. Moreover, induced overexpression of miR-30b-5p promoted the MDA-MB-231 and HCC 1937 cell growth, migration, and invasion and reduced the cellular apoptosis. Further studies confirmed that miR-30b-5p could directly target ASPP2 and then activate the AKT signaling pathway. Our results suggested that miR-30b-5p could act as a tumor promoter in TNBC. The newly identified miR-30b-5p/ASPP2/AKT axis represents a novel therapeutic strategy for treating TNBC.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proliferación Celular , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Adulto , Anciano , Proteínas Reguladoras de la Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , MicroARNs/genética , Persona de Mediana Edad , Proteínas de Neoplasias/genética , ARN Neoplásico/genética
18.
Oncogene ; 39(2): 469-485, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31597953

RESUMEN

The development of chemoresistance remains a major challenge that accounts for colorectal cancer (CRC) lethality. Dichloroacetate (DCA) was originally used as a metabolic regulator in the treatment of metabolic diseases; here, DCA was assayed to identify the mechanisms underlying the chemoresistance of CRC. We found that DCA markedly enhanced chemosensitivity of CRC cells to fluorouracil (5-FU), and reduced the colony formation due to high levels of apoptosis. Using the microarray assay, we noted that miR-149-3p was involved in the chemoresistance of CRC, which was modulated by wild-type p53 after DCA treatment. In addition, PDK2 was identified as a direct target of miR-149-3p. Mechanistic analyses showed that overexpression of miR-149-3p enhanced 5-FU-induced apoptosis and reduced glucose metabolism, similar to the effects of PDK2 knockdown. In addition, overexpression of PDK2 partially reversed the inhibitory effect of miR-149-3p on glucose metabolism. Finally, both DCA treatment and miR-149-3p overexpression in 5-FU-resistant CRC cells were found to markedly sensitize the chemotherapeutic effect of 5-FU in vivo, and this effect was also validated in a small retrospective cohort of CRC patients. Taken together, we determined that the p53/miR-149-3p/PDK2 signaling pathway can potentially be targeted with DCA treatment to overcome chemoresistant CRC.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ácido Dicloroacético/farmacología , Glucosa/metabolismo , MicroARNs/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Ácido Dicloroacético/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/farmacología , Células HCT116 , Humanos , Masculino , Ratones
19.
J Cancer ; 10(24): 6037-6047, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31762813

RESUMEN

Chemoresistance is responsible for most colorectal cancer (CRC) related deaths. In this study, we found that dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, can be used as a sensitizer for oxaliplatin (L-OHP) chemoresistant CRC cells. The aim of this study was to explore the ability of DCA to overcome L-OHP resistance in CRC cells and to identify the underlying molecular mechanisms. We found that DCA sensitizes chemoresistant CRC cells to L-OHP-induced cytotoxic effects by inhibiting clone formation capacity and promoting cell apoptosis. A microRNA (miRNA) array was used for screen, and miR-543 was identified and shown to be downregulated after DCA treatment. The expression of miR-543 was higher in chemoresistant CRC cells than in chemosensitive CRC cells. Overexpression of miR-543 increased chemoresistance in CRC cells. The validated target gene, PTEN, was negatively regulated by miR-543 both in vitro and in vivo, and PTEN was upregulated by DCA through miR-543. In addition, overexpression of miR-543 reversed the inhibition of colony formation after DCA treatment. Furthermore, the Akt/mTOR pathway is activated by miR-543 and is involved in the miR-543 induced chemoresistance. There was a significant inverse relationship between miR-543 expression and PTEN level in CRC patients, and high miR-543 expression was associated with worse prognosis. In conclusion, DCA restored chemosensitivity through miR-543/PTEN/Akt/mTOR pathway, and miR-543 may be a potential marker or therapeutic target for chemoresistance in CRC.

20.
Mol Cancer ; 18(1): 50, 2019 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-30925930

RESUMEN

Increasing evidence indicates that the ability of cancer cells to convey biological information to recipient cells within the tumor microenvironment (TME) is crucial for tumor progression. Microvesicles (MVs) are heterogenous vesicles formed by budding of the cellular membrane, which are secreted in larger amounts by cancer cells than normal cells. Recently, several reports have also disclosed that MVs function as important mediators of intercellular communication between cancerous and stromal cells within the TME, orchestrating complex pathophysiological processes. Chemokines are a family of small inflammatory cytokines that are able to induce chemotaxis in responsive cells. MVs which selective incorporate chemokines as their molecular cargos may play important regulatory roles in oncogenic processes including tumor proliferation, apoptosis, angiogenesis, metastasis, chemoresistance and immunomodulation, et al. Therefore, it is important to explore the association of MVs and chemokines in TME, identify the potential prognostic marker of tumor, and develop more effective treatment strategies. Here we review the relevant literature regarding the role of MVs and chemokines in TME.


Asunto(s)
Comunicación Celular , Micropartículas Derivadas de Células/metabolismo , Quimiocinas/metabolismo , Neoplasias/patología , Microambiente Tumoral , Animales , Progresión de la Enfermedad , Espacio Extracelular/metabolismo , Humanos , Neoplasias/etiología , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA