Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ophthalmology ; 125(9): 1421-1430, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29759820

RESUMEN

PURPOSE: To develop a universal gene therapy to overcome the genetic heterogeneity in retinitis pigmentosa (RP) resulting from mutations in rhodopsin (RHO). DESIGN: Experimental study for a combination gene therapy that uses both gene ablation and gene replacement. PARTICIPANTS: This study included 2 kinds of human RHO mutation knock-in mouse models: RhoP23H and RhoD190N. In total, 23 RhoP23H/P23H, 43 RhoP23H/+, and 31 RhoD190N/+ mice were used for analysis. METHODS: This study involved gene therapy using dual adeno-associated viruses (AAVs) that (1) destroy expression of the endogenous Rho gene in a mutation-independent manner via an improved clustered regularly interspaced short palindromic repeats-based gene deletion and (2) enable expression of wild-type protein via exogenous cDNA. MAIN OUTCOME MEASURES: Electroretinographic and histologic analysis. RESULTS: The thickness of the outer nuclear layer (ONL) after the subretinal injection of combination ablate-and-replace gene therapy was approximately 17% to 36% more than the ONL thickness resulting from gene replacement-only therapy at 3 months after AAV injection. Furthermore, electroretinography results demonstrated that the a and b waves of both RhoP23H and RhoD190N disease models were preserved more significantly using ablate-and-replace gene therapy (P < 0.001), but not by gene replacement monotherapy. CONCLUSIONS: As a proof of concept, our results suggest that the ablate-and-replace strategy can ameliorate disease progression as measured by photoreceptor structure and function for both of the human mutation knock-in models. These results demonstrate the potency of the ablate-and-replace strategy to treat RP caused by different Rho mutations. Furthermore, because ablate-and-replace treatment is mutation independent, this strategy may be used to treat a wide array of dominant diseases in ophthalmology and other fields. Clinical trials using ablate-and-replace gene therapy would allow researchers to determine if this strategy provides any benefits for patients with diseases of interest.


Asunto(s)
Terapia Genética/métodos , Retinitis Pigmentosa/genética , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Animales de Enfermedad , Electrorretinografía , Vectores Genéticos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/terapia
2.
J Clin Invest ; 126(12): 4659-4673, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27841758

RESUMEN

Retinitis pigmentosa (RP) encompasses a diverse group of Mendelian disorders leading to progressive degeneration of rods and then cones. For reasons that remain unclear, diseased RP photoreceptors begin to deteriorate, eventually leading to cell death and, consequently, loss of vision. Here, we have hypothesized that RP associated with mutations in phosphodiesterase-6 (PDE6) provokes a metabolic aberration in rod cells that promotes the pathological consequences of elevated cGMP and Ca2+, which are induced by the Pde6 mutation. Inhibition of sirtuin 6 (SIRT6), a histone deacetylase repressor of glycolytic flux, reprogrammed rods into perpetual glycolysis, thereby driving the accumulation of biosynthetic intermediates, improving outer segment (OS) length, enhancing photoreceptor survival, and preserving vision. In mouse retinae lacking Sirt6, effectors of glycolytic flux were dramatically increased, leading to upregulation of key intermediates in glycolysis, TCA cycle, and glutaminolysis. Both transgenic and AAV2/8 gene therapy-mediated ablation of Sirt6 in rods provided electrophysiological and anatomic rescue of both rod and cone photoreceptors in a preclinical model of RP. Due to the extensive network of downstream effectors of Sirt6, this study motivates further research into the role that these pathways play in retinal degeneration. Because reprogramming metabolism by enhancing glycolysis is not gene specific, this strategy may be applicable to a wide range of neurodegenerative disorders.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular , Proteínas del Ojo/antagonistas & inhibidores , Terapia Genética/métodos , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/terapia , Sirtuinas/antagonistas & inhibidores , Animales , Ciclo del Ácido Cítrico/genética , GMP Cíclico/genética , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Dependovirus , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Glucólisis/genética , Ratones , Ratones Mutantes , Mutación , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Sirtuinas/genética , Sirtuinas/metabolismo , Transducción Genética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA