Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Pharm Anal ; 14(8): 100957, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39253293

RESUMEN

Arsenic compounds are widely used for the therapeutic intervention of multiple diseases. Ancient pharmacologists discovered the medicinal utility of these highly toxic substances, and modern pharmacologists have further recognized the specific active ingredients in human diseases. In particular, Arsenic trioxide (ATO), as a main component, has therapeutic effects on various tumors (including leukemia, hepatocellular carcinoma, lung cancer, etc.). However, its toxicity limits its efficacy, and controlling the toxicity has been an important issue. Interestingly, recent evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation, which may determine their toxicity and therapeutic efficacy. Here, we summarize the arsenic compounds-regulating phase separation and membraneless organelles formation. We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds, highlighting potential mechanisms underlying the clinical application of arsenic compounds.

2.
Cancer Lett ; 592: 216922, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38704137

RESUMEN

Lung adenocarcinoma (LUAD), a type of non-small cell lung cancer (NSCLC), originates from not only bronchial epithelial cells but also alveolar type 2 (AT2) cells, which could differentiate into AT2-like cells. AT2-like cells function as cancer stem cells (CSCs) of LUAD tumorigenesis to give rise to adenocarcinoma. However, the mechanism underlying AT2 cell differentiation into AT2-like cells in LUAD remains unknown. We analyze genes differentially expressed and genes with significantly different survival curves in LUAD, and the combination of these two analyses yields 147 differential genes, in which 14 differentially expressed genes were enriched in cell cycle pathway. We next analyze the protein levels of these genes in LUAD and find that Cyclin-A2 (CCNA2) is closely associated with LUAD tumorigenesis. Unexpectedly, high CCNA2 expression in LUAD is restrictedly associated with smoking and independent of other driver mutations. Single-cell sequencing analyses reveal that CCNA2 is predominantly involved in AT2-like cell differentiation, while inhibition of CCNA2 significantly reverses smoking-induced AT2-like cell differentiation. Mechanistically, CCNA2 binding to CDK2 phosphorylates the AXIN1 complex, which in turn induces ubiquitination-dependent degradation of ß-catenin and inhibits the WNT signaling pathway, thereby failing AT2 cell maintenance. These results uncover smoking-induced CCNA2 overexpression and subsequent WNT/ß-catenin signaling inactivation as a hitherto uncharacterized mechanism controlling AT2 cell differentiation and LUAD tumorigenesis.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinogénesis , Diferenciación Celular , Ciclina A2 , Neoplasias Pulmonares , Fumar , Animales , Femenino , Humanos , Masculino , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , beta Catenina/metabolismo , beta Catenina/genética , Carcinogénesis/genética , Línea Celular Tumoral , Ciclina A2/genética , Ciclina A2/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Fumar/efectos adversos , Vía de Señalización Wnt/genética , Ratas
3.
Molecules ; 29(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611852

RESUMEN

Moonlighting enzymes are multifunctional proteins that perform multiple functions beyond their primary role as catalytic enzymes. Extensive research and clinical practice have demonstrated their pivotal roles in the development and progression of cancer, making them promising targets for drug development. This article delves into multiple notable moonlighting enzymes, including GSK-3, GAPDH, and ENO1, and with a particular emphasis on an enigmatic phosphatase, PTP4A3. We scrutinize their distinct roles in cancer and the mechanisms that dictate their ability to switch roles. Lastly, we discuss the potential of an innovative approach to develop drugs targeting these moonlighting enzymes: target protein degradation. This strategy holds promise for effectively tackling moonlighting enzymes in the context of cancer therapy.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Neoplasias , Humanos , Monoéster Fosfórico Hidrolasas , Neoplasias/tratamiento farmacológico , Catálisis , Desarrollo de Medicamentos , Proteínas de Neoplasias , Proteínas Tirosina Fosfatasas
4.
Nat Commun ; 15(1): 987, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307877

RESUMEN

Aberrant activation of sonic hedgehog (SHH) signaling and its effector transcriptional factor GLI1 are essential for oncogenesis of SHH-dependent medulloblastoma (MBSHH) and basal cell carcinoma (BCC). Here, we show that SHH inactivates p38α (MAPK14) in a smoothened-dependent manner, conversely, p38α directly phosphorylates GLI1 on Ser937/Ser941 (human/mouse) to induce GLI1's proteasomal degradation and negates the transcription of SHH signaling. As a result, Gli1S941E loss-of-function knock-in significantly reduces the incidence and severity of smoothened-M2 transgene-induced spontaneous MBSHH, whereas Gli1S941A gain-of-function knock-in phenocopies Gli1 transgene in causing BCC-like proliferation in skin. Correspondingly, phospho-Ser937-GLI1, a destabilized form of GLI1, positively correlates to the overall survival rate of children with MBSHH. Together, these findings indicate that SHH-induced p38α inactivation and subsequent GLI1 dephosphorylation and stabilization in controlling SHH signaling and may provide avenues for future interventions of MBSHH and BCC.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Niño , Humanos , Ratones , Neoplasias Cerebelosas/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Meduloblastoma/patología , Oncogenes , Fosforilación , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
6.
J Biol Chem ; 299(12): 105395, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890777

RESUMEN

Sterile 20-like kinases Mst1 and Mst2 (Mst1/2) and large tumor suppressor 1/2 are core kinases to mediate Hippo signaling in maintaining tissue homeostasis. We have previously demonstrated that Smad ubiquitin (Ub) regulatory factor 1 (Smurf1), a HECT-type E3 ligase, ubiquitinates and in turn destabilizes large tumor suppressor 1/2 to induce the transcriptional output of Hippo signaling. Here, we unexpectedly find that Smurf1 interacts with and polyubiquitinates Mst1/2 by virtue of K27- and K29-linked Ub chains, resulting in the proteasomal degradation of Mst1/2 and attenuation of their tumor-suppressor functions. Among the potential Ub acceptor sites on Mst1/2, K285/K282 are conserved and essential for Smurf1-induced polyubiquitination and degradation of Mst1/2 as well as transcriptional output of Hippo signaling. As a result, K285R/K282R mutation of Mst1/2 not only negates the transcriptional output of Hippo signaling but enhances the tumor-suppressor functions of Mst1/2. Together, we demonstrate that Smurf1-mediated polyubiquitination on K285/K282 of Mst1/2 destabilizes Mst1/2 to attenuate their tumor-suppressor functions. Thus, the present study identifies Smurf1-mediated ubiquitination of Mst1/2 as a hitherto uncharacterized mechanism fine-tuning the Hippo signaling pathway and may provide additional targets for therapeutic intervention of diseases associated with this important pathway.


Asunto(s)
Genes Supresores de Tumor , Ubiquitina-Proteína Ligasas , Vía de Señalización Hippo , Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos , Animales , Ratones
8.
Genes Dis ; 10(5): 2013-2028, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37492706

RESUMEN

Alternative splicing (AS) produces the different mRNA splicing bodies, which are then translated into multiple protein isoforms and participate in various biological functions. With a deeper understanding of alternative splicing through the study of transcriptomes using high-throughput sequencing-based methods, the correlation between aberrant AS and diseases triggered a great concern, especially abnormal AS and cancer. Medulloblastoma (MB) is an intracranial tumor in children. Sonic hedgehog MB (SHH-MB) accounted for approximately 30% of MB, which is associated with the activation of SHH signaling. Growing evidence shows that aberrant AS is closely related to the tumorigenesis of MB. Here, we briefly introduced the AS and its mechanism. Next, we described canonical/noncanonical hedgehog signaling and its correlation with MB. The main description focused on AS of various regulators in canonical hedgehog signaling in MB. In addition, we also described AS of various regulators in noncanonical hedgehog signaling. Meanwhile, activated hedgehog signaling also induces AS in MB. Then, we pointed out that aberrant AS of hedgehog signaling is associated with different MB subgroups. Finally, we summarized the therapeutic applications of targeted AS in cancer treatment. In summary, further understanding of AS in SHH-MB could develop therapeutic targets for splicing factors which may be a novel therapeutic strategy.

9.
Nat Commun ; 14(1): 3887, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393345

RESUMEN

Allergic asthma is characterized by goblet cell metaplasia and subsequent mucus hypersecretion that contribute to the morbidity and mortality of this disease. Here, we explore the potential role and underlying mechanism of protein SUMOylation-mediated goblet cell metaplasia. The components of SUMOylaion machinery are specifically expressed in healthy human bronchial epithelia and robustly upregulated in bronchial epithelia of patients or mouse models with allergic asthma. Intratracheal suppression of SUMOylation by 2-D08 robustly attenuates not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Phosphoproteomics and biochemical analyses reveal SUMOylation on K1007 activates ROCK2, a master regulator of goblet cell metaplasia, by facilitating its binding to and activation by RhoA, and an E3 ligase PIAS1 is responsible for SUMOylation on K1007. As a result, knockdown of PIAS1 in bronchial epithelia inactivates ROCK2 to attenuate IL-13-induced goblet cell metaplasia, and bronchial epithelial knock-in of ROCK2(K1007R) consistently inactivates ROCK2 to alleviate not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Together, SUMOylation-mediated ROCK2 activation is an integral component of Rho/ROCK signaling in regulating the pathological conditions of asthma and thus SUMOylation is an additional target for the therapeutic intervention of this disease.


Asunto(s)
Asma , Células Caliciformes , Quinasas Asociadas a rho , Animales , Humanos , Ratones , Alérgenos , Inflamación , Interleucina-13 , Metaplasia , Sumoilación , Quinasas Asociadas a rho/química
10.
Ageing Res Rev ; 87: 101920, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37004843

RESUMEN

Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic coupling structures between mitochondria and the endoplasmic reticulum (ER). As a new subcellular structure, MAMs combine the two critical organelle functions. Mitochondria and the ER could regulate each other via MAMs. MAMs are involved in calcium (Ca2+) homeostasis, autophagy, ER stress, lipid metabolism, etc. Researchers have found that MAMs are closely related to metabolic syndrome and neurodegenerative diseases (NDs). The formation of MAMs and their functions depend on specific proteins. Numerous protein enrichments, such as the IP3R-Grp75-VDAC complex, constitute MAMs. The changes in these proteins govern the interaction between mitochondria and the ER; they also affect the biological functions of MAMs. S-palmitoylation is a reversible protein post-translational modification (PTM) that mainly occurs on protein cysteine residues. More and more studies have shown that the S-palmitoylation of proteins is closely related to their membrane localization. Here, we first briefly describe the composition and function of MAMs, reviewing the component and biological roles of MAMs mediated by S-palmitoylation, elaborating on S-palmitoylated proteins in Ca2+ flux, lipid rafts, and so on. We try to provide new insight into the molecular basis of MAMs-related diseases, mainly NDs. Finally, we propose potential drug compounds targeting S-palmitoylation.


Asunto(s)
Membranas Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Membranas Mitocondriales/metabolismo , Proteína S/metabolismo , Lipoilación , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Estrés del Retículo Endoplásmico/fisiología
11.
Mol Med ; 29(1): 49, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020186

RESUMEN

BACKGROUND: The cytoskeletal architecture of osteoclasts (OCs) and bone resorption activity must be appropriately controlled for proper bone remodeling, which is associated with osteoporosis. The RhoA protein of GTPase plays a regulatory role in cytoskeletal components and contributes to osteoclast adhesion, podosome positioning, and differentiation. Although osteoclast investigations have traditionally been performed by in vitro analysis, however, the results have been inconsistent, and the significance of RhoA in bone physiology and pathology is still unknown. METHODS: We generated RhoA knockout mice by specifically deleting RhoA in the osteoclast lineage to understand more about RhoA's involvement in bone remodeling. The function of RhoA in osteoclast differentiation and bone resorption and the mechanisms were assessed using bone marrow macrophages (BMMs) in vitro. The ovariectomized (OVX) mouse model was adopted to examine the pathological effect of RhoA in bone loss. RESULTS: Conditional deletion of RhoA in the osteoclast lineage causes a severe osteopetrosis phenotype, which is attributable to a bone resorption suppression. Further mechanistic studies suggest that RhoA deficiency suppresses Akt-mTOR-NFATc1 signaling during osteoclast differentiation. Additionally, RhoA activation is consistently related to the significant enhancement the osteoclast activity, which culminates in the development of an osteoporotic bone phenotype. Furthermore, in mice, the absence of RhoA in osteoclast precursors prevented occurring OVX-induced bone loss. CONCLUSION: RhoA promoted osteoclast development via the Akt-mTOR-NFATc1 signaling pathway, resulting a osteoporosis phenotype, and that manipulating RhoA activity might be a therapeutic strategy for osteoporotic bone loss.


Asunto(s)
Resorción Ósea , Osteoporosis , Animales , Ratones , Resorción Ósea/complicaciones , Resorción Ósea/patología , Diferenciación Celular , Factores de Transcripción NFATC/metabolismo , Osteogénesis , Osteoporosis/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
12.
Cytokine Growth Factor Rev ; 70: 41-53, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36934069

RESUMEN

Epidermal growth factor receptor (EGFR) mutation is the most common driver mutation in non-small cell lung cancer (NSCLC). The first-line therapy for advanced NSCLC patients with EGFR-sensitive mutation is the EGFR tyrosine kinase inhibitor (EGFR-TKI). However, most NSCLC patients with EGFR mutation will develop resistant mutations in EGFR-TKI therapy. With further studies, resistance mechanisms represented by EGFR-T790M mutations have revealed the impact of EGFR mutations in situ on EGFR-TKIs sensitivity. The third-generation EGFR-TKIs inhibit both EGFR-sensitive mutations and T790M mutations. The emergence of novel mutations such as EGFR-C797S and EGFR-L718Q may decrease efficacy. Searching for new targets to overcome EGFR-TKI resistance becomes a key challenge. Therefore, an in-depth understanding of the regulatory mechanisms of EGFR is essential to find novel targets to overcome drug-resistant mutations in EGFR-TKIs. EGFR, as a receptor-type tyrosine kinase, undergoes homo/heterodimerization and autophosphorylation upon binding to ligands, which activates multiple downstream signaling pathways. Interestingly, there is growing evidence that the kinase activity of EGFR is affected not only by phosphorylation but also by various post-translational modifications (PTMs, such as S-palmitoylation, S-nitrosylation, Methylation, etc.). In this review, we systematically review the effects of different protein PTMs on EGFR kinase activity and its functionality and suggest that influencing EGFR kinase activity by modulating multiple EGFR sites are potential targets to overcome EGFR-TKIs resistance mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Proteínas Tirosina Quinasas Receptoras , Procesamiento Proteico-Postraduccional
13.
Cell Signal ; 102: 110523, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36379376

RESUMEN

Heat shock protein 90 (HSP90) molecular chaperone is responsible for the stabilization and biological activity of a diverse set of client proteins. We have previously demonstrated that inhibition of HSP90 by 17-Demethoxy-17-allyaminogeldanmycin (17-AAG) not only reverses the glucocorticoid-induced bone loss but also enhances the basal level of bone mass in mice. Here, we investigate the potential mechanism underlying HSP90-associated osteoblast differentiation and bone formation. Knockdown of HSP90ß but not HSP90α or inhibition of HSP90 by 17-AAG or NVP-BEP800 negates the protein levels of large tumor suppressor (LATS), the core kinases of Hippo signaling, resulting in the inactivation of LATS and activation of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), in the enhancement of osteoblastic differentiation. In contrast, genetic ablation of Lats1 in mesenchymal stem cells is sufficient to abolish the HSP90 inhibition-induced osteoblastic differentiation and bone formation. Mechanistically, HSP90ß but not HSP90α chaperones and prevents the SMAD specific E3 ubiquitin protein ligase 1 (SMURF1)-mediated and ubiquitination-dependent LATS protein proteasomal degradation, whereas 17-AAG abolishes these effects of HSP90ß. Thus, these results uncover the HSP90ß chaperoning SMURF1-mediated LATS protein proteasomal degradation and the subsequent YAP/TAZ activation as a hitherto uncharacterized mechanism controlling osteoblastic differentiation and bone formation.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Chaperonas Moleculares , Osteogénesis , Animales , Ratones , Benzoquinonas/farmacología , Proteínas HSP90 de Choque Térmico/metabolismo , Lactamas Macrocíclicas/farmacología , Proteínas Supresoras de Tumor/metabolismo
14.
J Exp Clin Cancer Res ; 41(1): 239, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941690

RESUMEN

BACKGROUND: Vascular endothelial growth factor D (VEGFD), a member of the VEGF family, is implicated in angiogenesis and lymphangiogenesis, and is deemed to be expressed at a low level in cancers. S-nitrosylation, a NO (nitric oxide)-mediated post-translational modification has a critical role in angiogenesis. Here, we attempt to dissect the role and underlying mechanism of S-nitrosylation-mediated VEGFD suppression in lung adenocarcinoma (LUAD). METHODS: Messenger RNA and protein expression of VEGFD in LUAD were analyzed by TCGA and CPTAC database, respectively, and Assistant for Clinical Bioinformatics was performed for complex analysis. Mouse models with urethane (Ure)-induced LUAD or LUAD xenograft were established to investigate the role of S-nitrosylation in VEGFD expression and of VEGFD mutants in the oncogenesis of LUAD. Molecular, cellular, and biochemical approaches were applied to explore the underlying mechanism of S-nitrosylation-mediated VEGFD suppression. Tube formation and wound healing assays were used to examine the role of VEGFD on the angiogenesis and migration of LUAD cells, and the molecular modeling was applied to predict the protein stability of VEGFD mutant. RESULTS: VEGFD mRNA and protein levels were decreased to a different extent in multiple primary malignancies, especially in LUAD. Low VEGFD protein expression was closely related to the oncogenesis of LUAD and resultant from excessive NO-induced VEGFD S-nitrosylation at Cys277. Moreover, inhibition of S-nitrosoglutathione reductase consistently decreased the VEGFD denitrosylation at Cys277 and consequently promoted angiogenesis of LUAD. Finally, the VEGFDC277S mutant decreased the secretion of mature VEGFD by attenuating the PC7-dependent proteolysis and VEGFDC277S mutant thus reversed the effect of VEGFD on angiogenesis of LUAD. CONCLUSION: Low-expression of VEGFD positively correlates with LUAD development. Aberrant S-nitrosylation of VEGFD negates itself to induce the tumorigenesis of LUAD, whereas normal S-nitrosylation of VEGFD is indispensable for its secretion and repression of angiogenesis of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Animales , Carcinogénesis , Humanos , Neoplasias Pulmonares/genética , Ratones , Óxido Nítrico/metabolismo , Factor D de Crecimiento Endotelial Vascular/genética , Factor D de Crecimiento Endotelial Vascular/metabolismo
15.
Cells ; 11(11)2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35681469

RESUMEN

The development of the embryonic lung demands complex endodermal-mesodermal interactions, which are regulated by a variety of signaling proteins. Hedgehog (Hh) signaling is vital for lung development. It plays a key regulatory role during several morphogenic mechanisms, such as cell growth, differentiation, migration, and persistence of cells. On the other hand, abnormal expression or loss of regulation of Hh signaling leads to airway asthmatic remodeling, which is characterized by cellular matrix modification in the respiratory system, goblet cell hyperplasia, deposition of collagen, epithelial cell apoptosis, proliferation, and activation of fibroblasts. Hh also targets some of the pathogens and seems to have a significant function in tissue repairment and immune-related disorders. Similarly, aberrant Hh signaling expression is critically associated with the etiology of a variety of other airway lung diseases, mainly, bronchial or tissue fibrosis, lung cancer, and pulmonary arterial hypertension, suggesting that controlled regulation of Hh signaling is crucial to retain healthy lung functioning. Moreover, shreds of evidence imply that the Hh signaling pathway links to lung organogenesis and asthmatic airway remodeling. Here, we compiled all up-to-date investigations linked with the role of Hh signaling in the development of lungs as well as the attribution of Hh signaling in impairment of lung expansion, airway remodeling, and immune response. In addition, we included all current investigational and therapeutic approaches to treat airway asthmatic remodeling and immune system pathway diseases.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Asma/tratamiento farmacológico , Proteínas Hedgehog/metabolismo , Humanos , Pulmón/metabolismo , Organogénesis , Transducción de Señal
16.
Biomed Pharmacother ; 149: 112783, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35299124

RESUMEN

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), severe form of ALI, are characterized by overwhelming of lung inflammation, and no treatment is currently available to treat ALI/ARDS. Cigarette smoke (CS) is one of the prime causes to induce ALI/ARDS via oxidative stress. Despite extensive research, no appropriate therapy is currently available to treat ALI/ARDS. Hence, new potential approaches are needed to treat ALI/ARDS. Consequently, this project was designed to explore the protective effects of verapamil against CS-induced ALI by in vivo and in vitro method. In vivo data obtained from respiratory mechanics, pulmonary morphometric analyses and lung histopathology revealed that verapamil dose-dependently and strikingly decreased the lung weight coefficient, attenuated the albumin exudation into lungs, minimized the infiltration of macrophages and neutrophils into lungs, reduced the pro-inflammatory cytokines (tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and keratinocyte chemoattractant (KC)) production, and improved the hypoxemia and lung histopathological changes. Similarly, verapamil also reduced the production of TNF-α, IL-6 and KC from cigarette smoke extract (CSE)-stimulated RAW 264.7 macrophage. Importantly, verapamil dose-dependently and remarkably suppressed the CS-induced oxidative stress via not only reducing the myeloperoxidase (MPO) activity of lungs, total oxidative stress (TOS) and malondialdehyde (MDA) content in the lungs and supernatant of RAW 264.7 macrophage but also improving total antioxidant capacity (TAC) and superoxide dismutase (SOD) production. Finally, verapamil strikingly decreased the NF-κB expression both in in vivo and in vitro models. Hence, verapamil has positive therapeutic effects against CS-induced ALI via suppressing uncontrolled inflammatory response, oxidative stress and NF-κB p65 signaling.


Asunto(s)
Lesión Pulmonar Aguda , Fumar Cigarrillos , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Animales , Fumar Cigarrillos/efectos adversos , Modelos Animales de Enfermedad , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Pulmón , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Estrés Oxidativo , Nicotiana , Factor de Necrosis Tumoral alfa/metabolismo , Verapamilo/farmacología , Verapamilo/uso terapéutico
17.
Theranostics ; 12(3): 1303-1320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154488

RESUMEN

Rationale: The nuclear translocation of transcriptional factor Gli is indispensable for Hedgehog (Hh) signaling activation, whose deregulation causes cancer progressions; however, the mechanisms governing Gli nuclear translocation are poorly understood. Here, we report that the Gli translocation in response to Hh requires Rac1 activation. Methods: C3H10T1/2 cell line and mouse embryonic fibroblasts were used to explore the molecular mechanisms underlying Rac1 activity in regulation of Hh signaling transduction. Transgenic mouse strains and human medulloblastoma (MB) tissue samples were utilized to examine the role of Rac1 in Hh-directed limb bud development and MB progression. Results: We show that upon the binding of Hh to receptor Patched1 (Ptch1), receptor Smoothened (Smo) dissociates from Ptch1 and binds to Vav2, resulting in the increased phosphorylation levels of Vav2 at Y172, which further activates Rac1. The role of Rac1 is dependent on the regulation of phosphorylation levels of KIF3A at S689 and T694, which in turn affects IFT88 stability and subsequently dampens SuFu-Gli complex formation, leading to the release of Gli from the complex and the consequent translocation of Gli into the nucleus. Moreover, Vav2 phospho-Y172 levels are up-regulated in GFAP-Cre;SmoM2+/- mouse cerebellum and human Shh type MB tissues, whereas deficiency of Rac1 in mouse embryonic limb bud ectoderm (Prx1-Cre;Rac1f/f ) impedes Hh activation by disruption of Gli nuclear translocation. Conclusion: Together, our results uncover the Rac1 activation and the subsequent Gli translocation as a hitherto uncharacterized mechanism controlling Hh signaling and may provide targets for therapeutic intervention of this signaling pathway.


Asunto(s)
Fibroblastos , Proteínas Hedgehog , Neuropéptidos , Proteína de Unión al GTP rac1 , Animales , Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Ratones , Neuropéptidos/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína de Unión al GTP rac1/metabolismo
18.
J Allergy Clin Immunol ; 150(1): 192-203, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35120971

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) play potentially important roles in various human diseases; however, their roles in the goblet cell metaplasia of asthma remain unknown. OBJECTIVE: We sought to investigate the potential role and underlying mechanism of circZNF652 in the regulation of allergic airway epithelial remodeling. METHODS: The differential expression profiles of circRNAs were analyzed by transcriptome microarray, and the effects and mechanisms underlying circZNF652-mediated goblet cell metaplasia were investigated by quantitative real-time PCR, RNA fluorescence in situ hybridization, Western blot, RNA pull-down, and RNA immunoprecipitation analyses. The roles of circZNF652 and miR-452-5p in allergic airway epithelial remodeling were explored in both the mouse model with allergic airway inflammation and children with asthma. RESULTS: One hundred sixty circRNAs were differentially expressed in bronchoalveolar lavage fluid of children with asthma versus children with foreign body aspiration, and 52 and 108 of them were significantly upregulated and downregulated, respectively. Among them, circZNF652 was predominantly expressed and robustly upregulated in airway epithelia of both the children with asthma and the mouse model with allergic airway inflammation. circZNF652 promoted the goblet cell metaplasia by functioning as a sponge of miR-452-5p, which released the Janus kinase 2 (JAK2) expression and subsequently activated JAK2/signal transducer and activator of transcription 6 (STAT6) signaling in the allergic airway epithelia. In addition, epithelial splicing regulatory protein 1, a splicing factor, accelerated the biogenesis of circZNF652 by binding to its flanking intron to promote the goblet cell metaplasia in allergic airway epithelial remodeling. CONCLUSIONS: Upregulation of circZNF652 expression in allergic bronchial epithelia contributed to the goblet cell metaplasia by activating the miR-452-5p/JAK2/STAT6 signaling pathway; thus, blockage of circZNF652 or agonism of miR-452-5p provided an alternative approach for the therapeutic intervention of epithelial remodeling in allergic airway inflammation.


Asunto(s)
Asma , Células Caliciformes , Hipersensibilidad , Janus Quinasa 2 , MicroARNs , ARN Circular , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Asma/patología , Niño , Humanos , Hipersensibilidad/metabolismo , Hibridación Fluorescente in Situ , Inflamación/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Metaplasia/genética , Ratones , MicroARNs/genética , ARN Circular/genética , Transducción de Señal
19.
Life Sci ; 290: 120257, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34952041

RESUMEN

Tumor cells can develop resistance to cell death which is divided into necrosis and programmed cell death (PCD). PCD, including apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Ferroptosis and pyroptosis, two new forms of cell death, have gradually been of interest to researchers. Boosting ferroptosis and pyroptosis of tumor cells could be a potential cancer therapy. Nitric oxide (NO) is a ubiquitous, lipophilic, highly diffusible, free-radical signaling molecule that plays various roles in tumorigenesis. In addition, NO also has regulatory mechanisms through S-nitrosylation that do not depend on the classic NO/sGC/cGMP signaling. The current tumor treatment strategy for NO is to promote cell death through promoting S-nitrosylation-induced apoptosis while multiple drawbacks dampen this tumor therapy. However, numerous studies have suggested that suppression of NO is perceived to active ferroptosis and pyroptosis, which could be a better anti-tumor treatment. In this review, ferroptosis and pyroptosis are described in detail. We summarize that NO influences ferroptosis and pyroptosis and infer that S-nitrosylation mediates ferroptosis- and pyroptosis-related signaling pathways. It could be a potential cancer therapy different from NO-induced apoptosis of tumor cells. Finally, the information shows the drugs that manipulate endogenous production and exogenous delivery of NO to modulate the levels of S-nitrosylation.


Asunto(s)
Ferroptosis/fisiología , Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Piroptosis/fisiología , Humanos , Neoplasias/patología , Óxido Nítrico/fisiología , Transducción de Señal
20.
J Genet Genomics ; 49(4): 350-363, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34391879

RESUMEN

Steroidogenesis from cholesterol in placental trophoblasts is fundamentally involved in the establishment and maintenance of pregnancy. The transcription factor gene heart and neural crest derivatives expressed 1 (Hand1) promotes differentiation of mouse trophoblast giant cells. However, the role of HAND1 in human trophoblasts remains unknown. Here, we report that HAND1 inhibits human trophoblastic progesterone (P4) and estradiol (E2) from cholesterol through downregulation of the expression of steroidogenic enzymes, including aromatase, P450 cholesterol side-chain cleavage enzyme (P450scc), and 3ß-hydroxysteroid dehydrogenase type 1 (3ß-HSD1). Mechanically, although HAND1 inhibits transcription of aromatase by directly binding to aromatase gene promoter, it restrains transcription of P450scc by upregulation of the methylation status of P450scc gene promoter through its binding to ALKBH1, a demethylase. Unlike aromatase and P450scc, HAND1 decreases 3ß-HSD1 mRNA levels by the reduction of its RNA stability through binding to and subsequent destabilizing protein HuR. Finally, HAND1 suppresses circulating P4 and E2 levels derived from JEG-3 xenograft and attenuates uterine response to P4 and E2. Thus, our results uncover a hitherto uncharacterized role of HAND1 in the regulation of cholesterol metabolism in human trophoblasts, which may help pinpoint the underlying mechanisms involved in supporting the development and physiological function of the human placenta.


Asunto(s)
Aromatasa , Trofoblastos , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Animales , Aromatasa/genética , Aromatasa/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Colesterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Femenino , Humanos , Ratones , Placenta/metabolismo , Embarazo , Esteroides/metabolismo , Trofoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA