Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 206: 111229, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32889310

RESUMEN

Arsenite is the predominant arsenic species in flooded paddy soil, and arsenite bioaccumulation in rice grains has been identified as a major problem in many Asian countries. Lowering arsenite level in rice plants and grain via accelerating arsenite oxidation is a potential strategy to help populations, who depended on rice consumption, to reduce the internal exposure level of arsenic. We herein isolated a strain, Achromobacter xylosoxidans GD03, with the high arsenite-oxidizing ability and plant growth-promoting traits. We observed that arsenite exposure could promote A. xylosoxidans GD03 to excrete indole-3-acetic acid and thus promoted rice growth. The pot culture experiments of Indica rice cultivar Guang You Ming 118 (GYM118) demonstrated that A. xylosoxidans GD03 inoculation of paddy soil (4.5-180 × 108 CFU GD03/kg soil) significantly accelerated arsenite oxidation in flooded soil. The daily arsenic oxidation rate with GD03 inoculation was 1.5-3.3 times as that without strain GD03 inoculation within the whole growth period of Indica GYM118 in the presence of the native microflora. It thus led to a 34-69%, 43-74%, 24-76% and 35-57% decrease in arsenite concentration of the stems, leaves, bran and grain of Indica GYM118 respectively and a 59-96% increase in rice grain yield. The paddy soil inoculated with 40.0 mL/kg of A. xylosoxidans GD03 resulted in a lowest As(III) concentrations in all rice organs of Indica GYM118, which equivalent to only 24-50% of the As(III) concentrations in the group without GD03 inoculation. The results highlight that a highly arsenite-oxidizing bacterium could accelerate arsenite oxidation of paddy soil when facing competition with the native microflora, thus decrease arsenic toxicity and bioavailable soil arsenic.


Asunto(s)
Achromobacter denitrificans/crecimiento & desarrollo , Arsenitos/metabolismo , Bioacumulación , Grano Comestible/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Achromobacter denitrificans/metabolismo , Arsenitos/análisis , Asia , Biomasa , Grano Comestible/metabolismo , Inundaciones , Oryza/metabolismo , Oryza/microbiología , Oxidación-Reducción , Suelo/química , Contaminantes del Suelo/análisis
2.
J Sep Sci ; 42(4): 816-825, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30580494

RESUMEN

An ultra high performance liquid chromatography with triple quadrupole mass spectrometry method for the determination of free and bound phenolic acids in tobacco plant and soil was developed. A simple solid-phase extraction, which used Polar Enhanced Polymer column as stationary phase and methanol as mobile phase, was used for the clean-up of bound phenolic acids, and a liquid-phase extraction using chloroform as solvent was used to purify free phenolic acids. With our method, 18 phenolic acids in rhizosphere soil of continuous cropping flue-cured cultivar k326 were separated and determined within 6 min with recoveries of 82-107% and relative standard deviations (n = 5) of 1.1-4.8%. Results showed that free phenolic acids accounted for 0-9, 92-100, and 69-100% of total phenolic acids in rhizosphere soil, cultivar k326 roots and leaves, respectively. Results also revealed that p-hydroxybenzoic acid, p-coumaric acid, vanillic acid, ferulic acid, and syringic acid were the predominant phenolic acids in rhizosphere soil of cultivar k326, and continuous cropping of cultivar k326 in the same farmland could lead to the accumulation of these phenolic acids in soil except syringic acid. The determination of phenolic acids provided detailed information for evaluating their source and characteristics in continuous cropping tobacco plant and soil.


Asunto(s)
Hidroxibenzoatos/análisis , Nicotiana/química , Suelo/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Rizosfera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA