Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Cell Dev Biol ; 10: 979096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36393834

RESUMEN

Saul-Wilson syndrome is a rare skeletal dysplasia caused by a heterozygous mutation in COG4 (p.G516R). Our previous study showed that this mutation affected glycosylation of proteoglycans and disturbed chondrocyte elongation and intercalation in zebrafish embryos expressing the COG4p.G516R variant. How this mutation causes chondrocyte deficiencies remain unsolved. To analyze a disease-relevant cell type, COG4p.G516R variant was generated by CRISPR knock-in technique in the chondrosarcoma cell line SW1353 to study chondrocyte differentiation and protein secretion. COG4p.G516R cells display impaired protein trafficking and altered COG complex size, similar to SWS-derived fibroblasts. Both SW1353 and HEK293T cells carrying COG4p.G516R showed very modest, cell-type dependent changes in N-glycans. Using 3D culture methods, we found that cells carrying the COG4p.G516R variant made smaller spheroids and had increased apoptosis, indicating impaired in vitro chondrogenesis. Adding WT cells or their conditioned medium reduced cell death and increased spheroid sizes of COG4p.G516R mutant cells, suggesting a deficiency in secreted matrix components. Mass spectrometry-based secretome analysis showed selectively impaired protein secretion, including MMP13 and IGFBP7 which are involved in chondrogenesis and osteogenesis. We verified reduced expression of chondrogenic differentiation markers, MMP13 and COL10A1 and delayed response to BMP2 in COG4p.G516R mutant cells. Collectively, our results show that the Saul-Wilson syndrome COG4p.G516R variant selectively affects the secretion of multiple proteins, especially in chondrocyte-like cells which could further cause pleiotropic defects including hampering long bone growth in SWS individuals.

2.
Front Cell Dev Biol ; 9: 720688, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34595172

RESUMEN

Saul-Wilson syndrome (SWS) is a rare, skeletal dysplasia with progeroid appearance and primordial dwarfism. It is caused by a heterozygous, dominant variant (p.G516R) in COG4, a subunit of the conserved oligomeric Golgi (COG) complex involved in intracellular vesicular transport. Our previous work has shown the intracellular disturbances caused by this mutation; however, the pathological mechanism of SWS needs further investigation. We sought to understand the molecular mechanism of specific aspects of the SWS phenotype by analyzing SWS-derived fibroblasts and zebrafish embryos expressing this dominant variant. SWS fibroblasts accumulate glypicans, a group of heparan sulfate proteoglycans (HSPGs) critical for growth and bone development through multiple signaling pathways. Consistently, we find that glypicans are increased in zebrafish embryos expressing the COG4 p.G516R variant. These animals show phenotypes consistent with convergent extension (CE) defects during gastrulation, shortened body length, and malformed jaw cartilage chondrocyte intercalation at larval stages. Since non-canonical Wnt signaling was shown in zebrafish to be related to the regulation of these processes by glypican 4, we assessed wnt levels and found a selective increase of wnt4 transcripts in the presence of COG4 p.G516R . Moreover, overexpression of wnt4 mRNA phenocopies these developmental defects. LGK974, an inhibitor of Wnt signaling, corrects the shortened body length at low concentrations but amplifies it at slightly higher concentrations. WNT4 and the non-canonical Wnt signaling component phospho-JNK are also elevated in cultured SWS-derived fibroblasts. Similar results from SWS cell lines and zebrafish point to altered non-canonical Wnt signaling as one possible mechanism underlying SWS pathology.

3.
Am J Hum Genet ; 108(6): 1040-1052, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33964207

RESUMEN

SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.


Asunto(s)
Antiportadores/genética , Trastornos Congénitos de Glicosilación/etiología , Retículo Endoplásmico/patología , Hepatopatías/complicaciones , Proteínas de Transporte de Monosacáridos/genética , Mutación , Adulto , Niño , Preescolar , Trastornos Congénitos de Glicosilación/patología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Genes Dominantes , Glicosilación , Humanos , Lactante , Recién Nacido , Masculino , Linaje
4.
Genet Med ; 22(5): 857-866, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31949312

RESUMEN

PURPOSE: Four patients with Saul-Wilson syndrome were reported between 1982 and 1994, but no additional individuals were described until 2018, when the molecular etiology of the disease was elucidated. Hence, the clinical phenotype of the disease remains poorly defined. We address this shortcoming by providing a detailed characterization of its phenotype. METHODS: Retrospective chart reviews were performed and primary radiographs assessed for all 14 individuals. Four individuals underwent detailed ophthalmologic examination by the same physician. Two individuals underwent gynecologic evaluation. Z-scores for height, weight, head circumference and body mass index were calculated at different ages. RESULTS: All patients exhibited short stature, with sharp decline from the mean within the first months of life, and a final height Z-score between -4 and -8.5 standard deviations. The facial and radiographic features evolved over time. Intermittent neutropenia was frequently observed. Novel findings included elevation of liver transaminases, skeletal fragility, rod-cone dystrophy, and cystic macular changes. CONCLUSIONS: Saul-Wilson syndrome presents a remarkably uniform phenotype, and the comprehensive description of our cohort allows for improved understanding of the long-term morbidity of the condition, establishment of follow-up recommendations for affected individuals, and documentation of the natural history into adulthood for comparison with treated patients, when therapeutics become available.


Asunto(s)
Enanismo , Adulto , Femenino , Humanos , Fenotipo , Estudios Retrospectivos
5.
Am J Hum Genet ; 103(4): 553-567, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30290151

RESUMEN

The conserved oligomeric Golgi (COG) complex is involved in intracellular vesicular transport, and is composed of eight subunits distributed in two lobes, lobe A (COG1-4) and lobe B (COG5-8). We describe fourteen individuals with Saul-Wilson syndrome, a rare form of primordial dwarfism with characteristic facial and radiographic features. All affected subjects harbored heterozygous de novo variants in COG4, giving rise to the same recurrent amino acid substitution (p.Gly516Arg). Affected individuals' fibroblasts, whose COG4 mRNA and protein were not decreased, exhibited delayed anterograde vesicular trafficking from the ER to the Golgi and accelerated retrograde vesicular recycling from the Golgi to the ER. This altered steady-state equilibrium led to a decrease in Golgi volume, as well as morphologic abnormalities with collapse of the Golgi stacks. Despite these abnormalities of the Golgi apparatus, protein glycosylation in sera and fibroblasts from affected subjects was not notably altered, but decorin, a proteoglycan secreted into the extracellular matrix, showed altered Golgi-dependent glycosylation. In summary, we define a specific heterozygous COG4 substitution as the molecular basis of Saul-Wilson syndrome, a rare skeletal dysplasia distinct from biallelic COG4-CDG.


Asunto(s)
Síndrome del Cromosoma X Frágil/genética , Transporte de Proteínas/genética , Proteoglicanos/genética , Proteínas de Transporte Vesicular/genética , Adulto , Sustitución de Aminoácidos/genética , Animales , Animales Modificados Genéticamente/genética , Línea Celular , Niño , Preescolar , Retículo Endoplásmico/genética , Matriz Extracelular/genética , Femenino , Fibroblastos/patología , Glicosilación , Aparato de Golgi/genética , Heterocigoto , Humanos , Lactante , Masculino , Pez Cebra
6.
J Cell Biol ; 216(9): 2843-2858, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28724525

RESUMEN

Most proteins destined for the peroxisomal matrix depend on the peroxisomal targeting signals (PTSs), which require the PTS receptor PEX5, whose deficiency causes fatal human peroxisomal biogenesis disorders (PBDs). TRIM37 gene mutations cause muscle-liver-brain-eye (mulibrey) nanism. We found that TRIM37 localizes in peroxisomal membranes and ubiquitylates PEX5 at K464 by interacting with its C-terminal 51 amino acids (CT51), which is required for PTS protein import. PEX5 mutations (K464A or ΔCT51), or TRIM37 depletion or mutation, reduce PEX5 abundance by promoting its proteasomal degradation, thereby impairing its functions in cargo binding and PTS protein import in human cells. TRIM37 or PEX5 depletion induces apoptosis and enhances sensitivity to oxidative stress, underscoring the cellular requirement for functional peroxisomes. Therefore, TRIM37-mediated ubiquitylation stabilizes PEX5 and promotes peroxisomal matrix protein import, suggesting that mulibrey nanism is a new PBD.


Asunto(s)
Enanismo Mulibrey/enzimología , Proteínas Nucleares/metabolismo , Peroxisomas/enzimología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Apoptosis , Predisposición Genética a la Enfermedad , Células HEK293 , Células Hep G2 , Humanos , Ratones , Enanismo Mulibrey/genética , Enanismo Mulibrey/patología , Mutación , Proteínas Nucleares/genética , Biogénesis de Organelos , Estrés Oxidativo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/patología , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Transporte de Proteínas , Proteolisis , Células RAW 264.7 , Receptores Citoplasmáticos y Nucleares/genética , Factores de Tiempo , Transfección , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ubiquitinación
7.
Syst Appl Microbiol ; 30(3): 189-96, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16899349

RESUMEN

The diversity of type I polyketide synthases (PKSs) in cellulolytic myxobacterium Sorangium was explored by assaying the ketoacyl synthases (KSs) in 10 Sorangium strains with two degenerate primer sets and 64 different KS fragments were obtained. For their deduced amino acid sequences, eight were identical to three known KSs from Sorangium and Magnetospirillum, while the others showed 54-83% identities to the modular KS domains reported from various microorganisms. Parts of the Sorangium KSs tightly share the clade with Actinobacteria excluding any other analyzed myxobacterial KSs, or with Cyanobacteria /Myxobacteria. Parts are widely located in the three functional groups - "Loading", "NRPS/PKS" and "Trans-AT". Sorangium KSs in the Actinobacteria, Cyanobacteria/Myxobacteria, or "Loading" clade further evolved independently on its own genus. Notably, the modular KSs from other Myxobacteria genera, i.e. Myxococcus, Stigmatella, Melittangium, Cystobacter and Angiococcus are often distributed crosswise and form non-Sorangium blend subgroups. "NRPS/PKS" and "Trans-AT" are two rather diverse groups and the Sorangium KSs in these clades evolved crosswise with other taxa lineages. The results presented in this paper suggest that the inherent genetic strategies, together with frequent gene importing from many organisms (HGT) have contributed to the evolution of modular PKSs in Sorangium. These findings reinforce that Sorangium strains are really excellent creators for novel and diverse polyketides.


Asunto(s)
Evolución Molecular , Myxococcales/enzimología , Myxococcales/genética , Sintasas Poliquetidas/genética , Genes Bacterianos , Datos de Secuencia Molecular , Myxococcales/clasificación , Filogenia , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA