Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cells ; 13(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474345

RESUMEN

Developmental pluripotency-associated 2 (DPPA2) and DPPA4 are crucial transcription factors involved in maintaining pluripotency in humans and mice. However, the role of DPPA2/4 in bovine extended pluripotent stem cells (bEPSCs) has not been investigated. In this study, a subset of bEPSC-related differentially expressed genes (DEGs), including DPPA2 and DPPA4, was identified based on multiomics data (ATAC-seq and RNA-seq). Subsequent investigations revealed that double overexpression of DPPA2/4 facilitates the reprogramming of bovine fetal fibroblasts (BFFs) into bEPSCs, whereas knockout of DPPA2/4 in BFFs leads to inefficient reprogramming. DPPA2/4 overexpression and knockdown experiments revealed that the pluripotency and proliferation capability of bEPSCs were maintained by promoting the transition from the G1 phase to the S phase of the cell cycle. By activating the PI3K/AKT/GSK3ß/ß-catenin pathway in bEPSCs, DPPA2/4 can increase the nuclear accumulation of ß-catenin, which further upregulates lymphoid enhancer binding factor 1 (LEF1) transcription factor activity. Moreover, DPPA2/4 can also regulate the expression of LEF1 by directly binding to its promoter region. Overall, our results demonstrate that DPPA2/4 promote the reprogramming of BFFs into bEPSCs while also maintaining the pluripotency and proliferation capability of bEPSCs by regulating the PI3K/AKT/GSK3ß/ß-catenin pathway and subsequently activating LEF1. These findings expand our understanding of the gene regulatory network involved in bEPSC pluripotency.


Asunto(s)
Proteínas Nucleares , Células Madre Pluripotentes , Factores de Transcripción , beta Catenina , Animales , Bovinos , beta Catenina/metabolismo , Proliferación Celular , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Nucleares/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569280

RESUMEN

Mixed-lineage leukemia 1 (MLL1) introduces 1-, 2- and 3-methylation into histone H3K4 through the evolutionarily conserved set domain. In this study, bovine embryonic stem cells (bESCs, known as bESCs-F7) were established from in vitro-fertilized (IVF) embryos via Wnt signaling inhibition; however, their contribution to the endoderm in vivo is limited. To improve the quality of bESCs, MM-102, an inhibitor of MLL1, was applied to the culture. The results showed that MLL1 inhibition along with GSK3 and MAP2K inhibition (3i) at the embryonic stage did not affect bESCs' establishment and pluripotency. MLL1 inhibition improved the pluripotency and differentiation potential of bESCs via the up-regulation of stem cell signaling pathways such as PI3K-Akt and WNT. MLL1 inhibition decreased H3K4me1 modification at the promoters and altered the distribution of DNA methylation in bESCs. In summary, MLL1 inhibition gives bESCs better pluripotency, and its application may provide high-quality pluripotent stem cells for domestic animals.


Asunto(s)
Leucemia , Proteína de la Leucemia Mieloide-Linfoide , Animales , Bovinos , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Metilación de ADN , Leucemia/genética
3.
Crit Rev Food Sci Nutr ; 62(8): 2221-2234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33319595

RESUMEN

Obesity has become a worldwide issue and is accompanied by serious complications. Western high energy diet has been identified to be a major factor contributing to the current obesity pandemic. Thus, it is important to optimize dietary composition, bioactive substances, and agents to prevent and treat obesity. To date, extracts from plants, such as vegetables, tea, fruits, and Chinese herbal medicine, have been showed to have the abilities of regulating adipogenesis and attenuating obesity. These plant extracts mainly contain polyphenols, alkaloids, and terpenoids, which could play a significant role in anti-obesity through various signaling pathways and gut microbiota. Those reported anti-obesity mechanisms mainly include inhibiting white adipose tissue growth and lipogenesis, promoting lipolysis, brown/beige adipose tissue development, and muscle thermogenesis. In this review, we summarize the plant extracts and their possible mechanisms responsible for their anti-obesity effects. Based on the current findings, dietary plant extracts and foods containing these bioactive compounds can be potential preventive or therapeutic agents for obesity and its related metabolic diseases.


Asunto(s)
Fármacos Antiobesidad , Extractos Vegetales , Adipogénesis , Tejido Adiposo Blanco/metabolismo , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Humanos , Obesidad/etiología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Termogénesis
4.
Artículo en Inglés | MEDLINE | ID: mdl-32548103

RESUMEN

Pancreatic adenocarcinoma (PAAD) is a pancreatic disease with considerable mortality worldwide. Because of a lack of obvious symptoms at the early stage, most PAAD patients are diagnosed at the terminal stage and prognosis is usually poor. In this study, we firstly obtained RNA sequencing data of 181 patients with PAAD from The Cancer Genome Atlas (TCGA) database to identify early diagnostic biomarkers for PAAD. Survival-related mRNAs were identified using a weighted gene co-expression network analysis (WGCNA), and then a linear prognostic model of seven long non-coding RNAs (lncRNAs) was established using univariate and multivariate Cox proportional hazards regression analyses, which is verified using a time-dependent receiver operating characteristic (ROC) curve analysis. Finally, according to the survival analysis, we constructed a survival-related competing endogenous RNA (ceRNA) network. Our results showed that: (1) The upregulated genes related to cell cycle-related pathway (including homologous recombination, DNA replication and mismatch repair) in PAAD can increase the proliferation ability of cancer cells; (2) The 7-lncRNA signature can predict the overall survival (OS) of PAAD patients; and (3) The key mRNAs and lncRNAs are involved in mutual regulation in the ceRNA network.

5.
Theriogenology ; 146: 58-70, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32059151

RESUMEN

The MM-102 compound prevents the interaction between mixed lineage leukemia 1 (MLL1) and WD Trp-Asp repeat domain 5 (WDR5) and results in the inhibition of MLL1 H3K4 histone methyltransferase (HMT) activity. The inhibition of the FGFR signaling pathway and activation of the WNT pathway by small molecule inhibitors (known as 2i) improves blastocyst development. However, studies on the effects of MLL1 combined with GSK3 and MAP2K inhibition (3i) on the development of embryos have not been reported. Our results show that 3i improves bovine and mouse IVF development only when added at the appropriate time point and affects ICM-related gene (OCT4, SOX2 and NANOG) expression in a concentration-dependent manner. 3i increases the expression of blastocyst-related genes such as PRDM14, KLF4 and KLF17 and decreases the expression of the de novo DNA methyltransferase genes DNMT3L and DNMT1 in bovines, but increases Prdm14, Stella, Klf2 and Klf4 expression and significantly decreases Dnmt3l, Dnmt3b, and Dnmt1 expression in mice. The analysis of transcription data showed that the expression of DNMTs increases slightly later than that of PRDM14 during embryo development, which indicates that PRDM14 is the upstream regulator. 3i upregulates PRDM14 and then downregulates DNMTs to affect IVF embryo development. When 3i-treated mouse embryos were transplanted, the morphology and body weight of the offspring were not significantly different from those of the control group. These offspring were as fertile as normal mice. 3i improves the development of bovine and mouse IVF embryos but does not affect the quality of the embryos. The application of 3i provides a new method for improving IVF embryo production in domestic animals.


Asunto(s)
Bovinos , Fertilización In Vitro/veterinaria , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Animales , Técnicas de Cultivo de Embriones/veterinaria , Femenino , Regulación del Desarrollo de la Expresión Génica , Factor 4 Similar a Kruppel , Proteína de la Leucemia Mieloide-Linfoide/genética
6.
Stem Cell Res Ther ; 10(1): 193, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31248457

RESUMEN

BACKGROUND: Pigs have emerged as one of the most popular large animal models in biomedical research, which in many cases is considered as a superior choice over rodent models. In addition, transplantation studies using pig pluripotent stem (PS) cell derivatives may serve as a testbed for safety and efficacy prior to human trials. Recently, it has been shown that mouse and human PS cells cultured in LCDM (recombinant human LIF, CHIR 99021, (S)-(+)-dimethindene maleate, minocycline hydrochloride) medium exhibited extended developmental potential (designated as extended pluripotent stem cells, or EPS cells), which could generate both embryonic and extraembryonic tissues in chimeric mouse conceptus. Whether stable pig induced pluripotent stem (iPS) cells can be generated in LCDM medium and their chimeric competency remains unknown. METHODS: iPS cells were generated by infecting pig pericytes (PC) and embryonic fibroblasts (PEFs) with a retroviral vector encoding Oct4, Sox2, Klf4, and cMyc reprogramming factors and subsequently cultured in a modified LCDM medium. The pluripotency of PC-iPS and PEF-iPS cells was characterized by examining the expression of pluripotency-related transcription factors and surface markers, transcriptome analysis, and in vitro and in vivo differentiation capabilities. Chimeric contribution of PC-iPS cells to mouse and pig conceptus was also evaluated with fluorescence microscopy, flow cytometry, and PCR analysis. RESULTS: In this study, using a modified version of the LCDM medium, we successfully generated iPS cells from both PCs and PEFs. Both PC-iPS and PEF-iPS cells maintained the stable "dome-shaped" morphology and genome stability after long-term culture. The immunocytochemistry analyses revealed that both PC-iPS and PEF-iPS cells expressed OCT4, SOX2, and SALL4, but only PC-iPS cells expressed NANOG and TRA-1-81 (faint). PC-iPS and PEF-iPS cells could be differentiated into cell derivatives of all three primary germ layers in vitro. The transcriptome analysis showed that PEF-iPS and PC-iPS cells clustered with pig ICM, Heatmap and volcano plot showed that there were 1475 differentially expressed genes (DEGs) between PC-iPS and PEF-iPS cells (adjusted p value < 0.1), and the numbers of upregulated genes and downregulated genes in PC-iPS cells were 755 and 720, respectively. Upregulated genes were enriched with GO terms including regulation of stem cell differentiation, proliferation, development, and maintenance. And KEGG pathway enrichment in upregulated genes revealed Wnt, Jak-STAT, TGF-ß, P53, and MAPK stem cell signaling pathways. Fluorescence microscopy and genomic PCR analyses using pig mtDNA-specific and GFP primers showed that the PC-iPS cell derivatives could be detected in both mouse and pig pre-implantation blastocysts and post-implantation conceptuses. Quantitative analysis via flow cytometry revealed that the chimeric contribution of pig PC-iPS cells in mouse conceptus was up to 0.04%. CONCLUSIONS: Our findings demonstrate that stable iPS cells could be generated in LCDM medium, which could give rise to both embryonic and extraembryonic cells in vivo. However, the efficiency and level of chimeric contribution of pig LCDM-iPS cells were found low.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes/citología , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/fisiología , Transferencia de Embrión , Cuerpos Embrioides/citología , Fibroblastos/citología , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Ratones , Pericitos/citología , Células Madre Pluripotentes/metabolismo , Porcinos
7.
Nat Commun ; 10(1): 496, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700702

RESUMEN

Spatially ordered embryo-like structures self-assembled from blastocyst-derived stem cells can be generated to mimic embryogenesis in vitro. However, the assembly system and developmental potential of such structures needs to be further studied. Here, we devise a nonadherent-suspension-shaking system to generate self-assembled embryo-like structures (ETX-embryoids) using mouse embryonic, trophoblast and extra-embryonic endoderm stem cells. When cultured together, the three cell types aggregate and sort into lineage-specific compartments. Signaling among these compartments results in molecular and morphogenic events that closely mimic those observed in wild-type embryos. These ETX-embryoids exhibit lumenogenesis, asymmetric patterns of gene expression for markers of mesoderm and primordial germ cell precursors, and formation of anterior visceral endoderm-like tissues. After transplantation into the pseudopregnant mouse uterus, ETX-embryoids efficiently initiate implantation and trigger the formation of decidual tissues. The ability of the three cell types to self-assemble into an embryo-like structure in vitro provides a powerful model system for studying embryogenesis.


Asunto(s)
Blastocisto/citología , Embrión de Mamíferos/citología , Células Madre/citología , Animales , Implantación del Embrión , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Ratones
8.
PeerJ ; 6: e4177, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29312817

RESUMEN

BACKGROUND: Pluripotent stem cells (PSCs) offer immense potential as a source for regenerative therapies. The teratoma assay is widely used in the field of stem cells and regenerative medicine, but the cell composition of teratoma is still elusive. METHODS: We utilized PSCs expressing enhanced green fluorescent protein (EGFP) under the control of the Pou5f1 promoter to study the persistence of potential pluripotent cells during teratoma formation in vivo. OCT4-MES (mouse embryonic stem cells) were isolated from the blastocysts of 3.5-day OCT4-EGFP mice (transgenic mice express EGFP cDNA under the control of the Pou5f1 promoter) embryos, and TG iPS 1-7 (induced pluripotent stem cells) were generated from mouse embryonic fibroblasts (MEFs) from 13.5-day OCT4-EGFP mice embryos by infecting them with a virus carrying OCT4, SOX2, KLF4 and c-MYC. These pluripotent cells were characterized according to their morphology and expression of pluripotency markers. Their differentiation ability was studied with in vivo teratoma formation assays. Further differences between pluripotent cells were examined by real-time quantitative PCR (qPCR). RESULTS: The results showed that several OCT4-expressing PSCs escaped differentiation inside of teratomas, and these escaped cells (MES-FT, GFP-positive cells separated from OCT4-MES-derived teratomas; and iPS-FT, GFP-positive cells obtained from teratomas formed by TG iPS 1-7) retained their pluripotency. Interestingly, a small number of GFP-positive cells in teratomas formed by MES-FT and iPS-FT (MES-ST, GFP-positive cells isolated from MES-FT-derived teratomas; iPS-ST, GFP-positive cells obtained from teratomas formed by iPS-FT) were still pluripotent, as shown by alkaline phosphatase (AP) staining, immunofluorescent staining and PCR. MES-FT, iPS-FT, MES-ST and iPS-ST cells also expressed several markers associated with germ cell formation, such as Dazl, Stella and Stra8. CONCLUSIONS: In summary, a small number of PSCs escaped differentiation inside of teratomas, and these cells maintained pluripotency and partially developed towards germ cells. Both escaped PSCs and germ cells present a risk of tumor formation. Therefore, medical workers must be careful in preventing tumor formation when stem cells are used to treat specific diseases.

9.
Biol Reprod ; 97(1): 5-17, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28859285

RESUMEN

Preimplantation embryos undergo zygotic genome activation and lineage specification resulting in three distinct cell types in the late blastocyst. The molecular mechanisms underlying this progress are largely unknown in bovines. Here, we sought to analyze an extensive set of regulators at the single-cell level to define the events involved in the development of the bovine blastocyst. Using a quantitative microfluidics approach in single cells, we analyzed mRNA levels of 96 genes known to function in early embryonic development and maintenance of stem cell pluripotency in parallel in 384 individual cells from bovine preimplantation embryos. The developmental transitions can be distinguished by distinctive gene expression profiles and we identified NOTCH1, expressed in early developmental stages, while T-box 3 (TBX3) and fibroblast growth factor receptor 4 (FGFR4), expressed in late developmental stages. Three lineages can be segregated in bovine expanded blastocysts based on the expression patterns of lineage-specific genes such as disabled homolog 2 (DAB2), caudal type homeobox 2 (CDX2), ATPase H+/K+ transporting non-gastric alpha2 subunit (ATP12A), keratin 8 (KRT8), and transcription factor AP-2 alpha (TFAP2A) for trophectoderm; GATA binding protein 6 (GATA6) and goosecoid homeobox (GSC) for primitive endoderm; and Nanog homeobox (NANOG), teratocarcinoma-derived growth factor 1 (TDGF1), and PR/SET domain 14 (PRDM14) for epiblast. Moreover, some lineage-specific genes were coexpressed in blastomeres from the morula. The commitment to trophectoderm and inner cell mass lineages in bovines occurs later than in the mouse, and KRT8 might be an earlier marker for bovine trophectoderm cells. We determined that TDGF1 and PRDM14 might play pivotal roles in the primitive endoderm and epiblast specification of bovine blastocysts. Our results shed light on early cell fate determination in bovine preimplantation embryos and offer theoretical support for deriving bovine embryonic stem cells.


Asunto(s)
Blastocisto/metabolismo , Bovinos/embriología , Bovinos/metabolismo , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica/fisiología , Cigoto/metabolismo , Animales , Desarrollo Embrionario/fisiología , Transcriptoma
10.
Sci Rep ; 6: 27256, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27264660

RESUMEN

The ability to generate germ cells from pluripotent stem cells (PSCs) is valuable for human regenerative medicine and animal breeding. Germ cell-like cells (GCLCs) have been differentiated from mouse and human PSCs, but not from porcine PSCs, which are considered an ideal model for stem cell applications. Here, we developed a defined culture system for the induction of primordial germ cell-like cells (PGCLCs) from porcine induced PSCs (piPSCs). The identity of the PGCLCs was characterized by observing cell morphology, detecting germ cell marker gene expression and evaluating epigenetic properties. PGCLCs could further differentiate into spermatogonial stem cell-like cells (SSCLCs) in vitro. Importantly, meiosis occurred during SSCLC induction. Xenotransplantation of GCLCs into seminiferous tubules of infertile immunodeficient mice resulted in immunohistochemically identifiable germ cells in vivo. Overall, our study provides a feasible strategy for directing piPSCs to the germ cell fate and lays a foundation for exploring germ cell development mechanisms.


Asunto(s)
Células Madre Germinales Adultas/citología , Técnicas de Cultivo de Célula/métodos , Marcadores Genéticos/genética , Células Germinativas/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Germinales Adultas/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Epigénesis Genética , Femenino , Células Germinativas/metabolismo , Células Germinativas/trasplante , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Meiosis , Ratones , Medicina Regenerativa , Porcinos , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA