Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Inflamm Res ; 73(10): 1781-1801, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39180691

RESUMEN

OBJECTIVE: Intestinal mucositis is one of the common side effects of anti-cancer chemotherapy. However, the molecular mechanisms involved in mucositis development remain incompletely understood. In this study, we investigated the function of receptor-interacting protein kinase 3 (RIP3/RIPK3) in regulating doxorubicin-induced intestinal mucositis and its potential mechanisms. METHODS: Intestinal mucositis animal models were induced in mice for in vivo studies. Rat intestinal cell line IEC-6 was used for in vitro studies. RNA­seq was used to explore the transcriptomic changes in doxorubicin-induced intestinal mucositis. Intact glycopeptide characterization using mass spectrometry was applied to identify α-1,2-fucosylated proteins associated with mucositis. RESULTS: Doxorubicin treatment increased RIP3 expression in the intestine and caused severe intestinal mucositis in the mice, depletion of RIP3 abolished doxorubicin-induced intestinal mucositis. RIP3-mediated doxorubicin-induced mucositis did not depend on mixed lineage kinase domain-like (MLKL) but on α-1,2-fucosyltransferase 2 (FUT2)-catalyzed α-1,2-fucosylation on inflammation-related proteins. Deficiency of MLKL did not affect intestinal mucositis, whereas inhibition of α-1,2-fucosylation by 2-deoxy-D-galactose (2dGal) profoundly attenuated doxorubicin-induced inflammation and mucositis. CONCLUSIONS: RIP3-FUT2 pathway is a central node in doxorubicin-induced intestinal mucositis. Targeting intestinal RIP3 and/or FUT2-mediated α-1,2-fucosylation may provide potential targets for preventing chemotherapy-induced intestinal mucositis.


Asunto(s)
Doxorrubicina , Fucosiltransferasas , Galactósido 2-alfa-L-Fucosiltransferasa , Ratones Endogámicos C57BL , Mucositis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Doxorrubicina/efectos adversos , Mucositis/inducido químicamente , Mucositis/metabolismo , Mucositis/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Ratas , Línea Celular , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Masculino , Ratones , Antibióticos Antineoplásicos/toxicidad , Antibióticos Antineoplásicos/efectos adversos , Ratones Noqueados
2.
Nat Metab ; 6(4): 708-723, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499763

RESUMEN

Cachexia affects 50-80% of patients with cancer and accounts for 20% of cancer-related death, but the underlying mechanism driving cachexia remains elusive. Here we show that circulating lactate levels positively correlate with the degree of body weight loss in male and female patients suffering from cancer cachexia, as well as in clinically relevant mouse models. Lactate infusion per se is sufficient to trigger a cachectic phenotype in tumour-free mice in a dose-dependent manner. Furthermore, we demonstrate that adipose-specific G-protein-coupled receptor (GPR)81 ablation, similarly to global GPR81 deficiency, ameliorates lactate-induced or tumour-induced adipose and muscle wasting in male mice, revealing adipose GPR81 as the major mediator of the catabolic effects of lactate. Mechanistically, lactate/GPR81-induced cachexia occurs independently of the well-established protein kinase A catabolic pathway, but it is mediated by a signalling cascade sequentially activating Gi-Gßγ-RhoA/ROCK1-p38. These findings highlight the therapeutic potential of targeting GPR81 for the treatment of this life-threatening complication of cancer.


Asunto(s)
Caquexia , Ácido Láctico , Neoplasias , Receptores Acoplados a Proteínas G , Caquexia/metabolismo , Caquexia/etiología , Animales , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Humanos , Ácido Láctico/metabolismo , Masculino , Femenino , Neoplasias/metabolismo , Neoplasias/complicaciones , Transducción de Señal
3.
Signal Transduct Target Ther ; 8(1): 263, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414783

RESUMEN

Due to the essential role of cyclin D1 in regulating transition from G1 to S phase in cell cycle, aberrant cyclin D1 expression is a major oncogenic event in many types of cancers. In particular, the dysregulation of ubiquitination-dependent degradation of cyclin D1 contributes to not only the pathogenesis of malignancies but also the refractory to cancer treatment regiments with CDK4/6 inhibitors. Here we show that in colorectal and gastric cancer patients, MG53 is downregulated in more than 80% of tumors compared to the normal gastrointestinal tissues from the same patient, and the reduced MG53 expression is correlated with increased cyclin D1 abundance and inferior survival. Mechanistically, MG53 catalyzes the K48-linked ubiquitination and subsequent degradation of cyclin D1. Thus, increased expression of MG53 leads to cell cycle arrest at G1, and thereby markedly suppresses cancer cell proliferation in vitro as well as tumor growth in mice with xenograft tumors or AOM/DSS induced-colorectal cancer. Consistently, MG53 deficiency results in accumulation of cyclin D1 protein and accelerates cancer cell growth both in culture and in animal models. These findings define MG53 as a tumor suppressor via facilitating cyclin D1 degradation, highlighting the therapeutic potential of targeting MG53 in treating cancers with dysregulated cyclin D1 turnover.


Asunto(s)
Neoplasias Gástricas , Ubiquitina-Proteína Ligasas , Humanos , Animales , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Proliferación Celular , Puntos de Control del Ciclo Celular , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Proteínas de la Membrana
4.
Metabolism ; 146: 155641, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37380017

RESUMEN

BACKGROUND AND AIMS: Hyperinsulinemia, hyperglucagonemia, and low-grade inflammation are frequently presented in obesity and type 2 diabetes (T2D). The pathogenic regulation between hyperinsulinemia/insulin resistance (IR) and low-grade inflammation is well documented in the development of diabetes. However, the cross-talk of hyperglucagonemia with low-grade inflammation during diabetes progression is poorly understood. In this study, we investigated the regulatory role of proinflammatory cytokine interleukin-6 (IL-6) on glucagon secretion. METHODS: The correlations between inflammatory cytokines and glucagon or insulin were analyzed in rhesus monkeys and humans. IL-6 signaling was blocked by IL-6 receptor-neutralizing antibody tocilizumab in obese or T2D rhesus monkeys, glucose tolerance was evaluated by intravenous glucose tolerance test (IVGTT). Glucagon and insulin secretion were measured in isolated islets from wild-type mouse, primary pancreatic α-cells and non-α-cells sorted from GluCre-ROSA26EYFP (GYY) mice, in which the enhanced yellow fluorescent protein (EYFP) was expressed under the proglucagon promoter, by fluorescence-activated cell sorting (FACS). Particularly, glucagon secretion in α-TC1 cells treated with IL-6 was measured, and RNA sequencing was used to screen the mediator underlying IL-6-induced glucagon secretion. SLC39A5 was knocking-down or overexpressed in α-TC1 cells to determine its impact in glucagon secretion and cytosolic zinc density. Dual luciferase and chromatin Immunoprecipitation were applied to analyze the signal transducer and activator of transcription 3 (STAT3) in the regulation of SLC39A5 transcription. RESULTS: Plasma IL-6 correlate positively with plasma glucagon levels, but not insulin, in rhesus monkeys and humans. Tocilizumab treatment reduced plasma glucagon, blood glucose and HbA1c in spontaneously obese or T2D rhesus monkeys. Tocilizumab treatment also decreased glucagon levels during IVGTT, and improved glucose tolerance. Moreover, IL-6 significantly increased glucagon secretion in isolated islets, primary pancreatic α-cells and α-TC1 cells. Mechanistically, we found that IL-6-activated STAT3 downregulated the zinc transporter SLC39A5, which in turn reduced cytosolic zinc concentration and ATP-sensitive potassium channel activity and augmented glucagon secretion. CONCLUSIONS: This study demonstrates that IL-6 increases glucagon secretion via the downregulation of zinc transporter SLC39A5. This result revealed the molecular mechanism underlying the pathogenesis of hyperglucagonemia and a previously unidentified function of IL-6 in the pathophysiology of T2D, providing a potential new therapeutic strategy of targeting IL-6/glucagon to preventing or treating T2D.


Asunto(s)
Proteínas de Transporte de Catión , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagón , Resistencia a la Insulina , Humanos , Ratones , Animales , Glucagón/metabolismo , Interleucina-6/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Macaca mulatta/metabolismo , Insulina/metabolismo , Glucemia/metabolismo , Células Secretoras de Glucagón/metabolismo , Obesidad/metabolismo , Inflamación/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Catión/metabolismo
5.
Circulation ; 145(15): 1154-1168, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35317609

RESUMEN

BACKGROUND: Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease, the leading cause of morbidity and mortality worldwide. At present, there is no effective therapy for reducing cardiac I/R injury. CaMKII (Ca2+/calmodulin-dependent kinase II) plays a pivotal role in the pathogenesis of severe heart conditions, including I/R injury. Pharmacological inhibition of CaMKII is an important strategy in the protection against myocardial damage and cardiac diseases. To date, there is no drug targeting CaMKII for the clinical therapy of heart disease. Furthermore, at present, there is no selective inhibitor of CaMKII-δ, the major CaMKII isoform in the heart. METHODS: A small-molecule kinase inhibitor library and a high-throughput screening system for the kinase activity assay of CaMKII-δ9 (the most abundant CaMKII-δ splice variant in human heart) were used to screen for CaMKII-δ inhibitors. Using cultured neonatal rat ventricular myocytes, human embryonic stem cell-derived cardiomyocytes, and in vivo mouse models, in conjunction with myocardial injury induced by I/R (or hypoxia/reoxygenation) and CaMKII-δ9 overexpression, we sought to investigate the protection of hesperadin against cardiomyocyte death and cardiac diseases. BALB/c nude mice with xenografted tumors of human cancer cells were used to evaluate the in vivo antitumor effect of hesperadin. RESULTS: Based on the small-molecule kinase inhibitor library and screening system, we found that hesperadin, an Aurora B kinase inhibitor with antitumor activity in vitro, directly bound to CaMKII-δ and specifically blocked its activation in an ATP-competitive manner. Hesperadin functionally ameliorated both I/R- and overexpressed CaMKII-δ9-induced cardiomyocyte death, myocardial damage, and heart failure in both rodents and human embryonic stem cell-derived cardiomyocytes. In addition, in an in vivo BALB/c nude mouse model with xenografted tumors of human cancer cells, hesperadin delayed tumor growth without inducing cardiomyocyte death or cardiac injury. CONCLUSIONS: Here, we identified hesperadin as a specific small-molecule inhibitor of CaMKII-δ with dual functions of cardioprotective and antitumor effects. These findings not only suggest that hesperadin is a promising leading compound for clinical therapy of cardiac I/R injury and heart failure, but also provide a strategy for the joint therapy of cancer and cardiovascular disease caused by anticancer treatment.


Asunto(s)
Insuficiencia Cardíaca , Daño por Reperfusión Miocárdica , Neoplasias , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Indoles , Isquemia/metabolismo , Ratones , Ratones Desnudos , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Neoplasias/patología , Ratas , Sulfonamidas
6.
STAR Protoc ; 2(3): 100497, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34337441

RESUMEN

Exogenous overexpression of target genes in both general and specific cell types is important for mechanistic studies of gene function. Here, we provide a step-by-step protocol for cell culture, plasmid transfection in HEK293T, and adenoviral infection in C2C12 cells for gene overexpression in vitro, using MG53 as an example. This protocol enables sufficient and efficient gene expression for the downstream functional analysis. For complete details on the use and execution of this protocol, please refer to Jiang et al. (2021).


Asunto(s)
Técnicas de Transferencia de Gen , Animales , Diferenciación Celular , Línea Celular , Expresión Génica , Células HEK293 , Humanos , Ratones
7.
J Am Heart Assoc ; 8(20): e012052, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31595836

RESUMEN

Background The impact of estimated glomerular filtration rate (eGFR) on clinical short-term outcomes after stroke thrombolysis with tissue plasminogen activator remains controversial. Methods and Results We analyzed 18 320 ischemic stroke patients who received intravenous tissue plasminogen activator at participating hospitals in the Chinese Stroke Center Alliance between June 2015 and November 2017. Multivariate logistic regression models were used to evaluate associations between eGFR (<45, 45-59, 60-89, and ≥90 mL/min per 1.73 m2) and in-hospital mortality and symptomatic intracerebral hemorrhage, adjusting for patient and hospital characteristics and the hospital clustering effect. Of the 18 320 patients receiving tissue plasminogen activator, 601 (3.3%) had an eGFR <45, 625 (3.4%) had an eGFR 45 to 59, 3679 (20.1%) had an eGFR 60 to 89, and 13 415 (73.2%) had an eGFR ≥90. As compared with eGFR ≥90, eGFR values <45 (6.7% versus 0.9%, adjusted odds ratio, 3.59; 95% CI, 2.18-5.91), 45 to 59 (4.0% versus 0.9%, adjusted odds ratio, 2.00; 95% CI, 1.18-3.38), and 60 to 89 (2.5% versus 0.9%, adjusted odds ratio, 1.67; 95% CI, 1.20-2.34) were independently associated with increased odds of in-hospital mortality. However, there was no statistically significant association between eGFR and symptomatic intracerebral hemorrhage. Conclusions eGFR was associated with an increased risk of in-hospital mortality in acute ischemic stroke patients after treatment with tissue plasminogen activator. eGFR is an important predictor of poststroke short-term death but not of symptomatic intracerebral hemorrhage.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Tasa de Filtración Glomerular/fisiología , Enfermedades Renales/etiología , Sistema de Registros , Terapia Trombolítica/métodos , Activador de Tejido Plasminógeno/administración & dosificación , Enfermedad Aguda , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/complicaciones , Isquemia Encefálica/mortalidad , China/epidemiología , Relación Dosis-Respuesta a Droga , Femenino , Mortalidad Hospitalaria/tendencias , Humanos , Infusiones Intravenosas , Enfermedades Renales/epidemiología , Enfermedades Renales/fisiopatología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Tasa de Supervivencia/tendencias , Resultado del Tratamiento
8.
Cancer Res ; 78(11): 2876-2885, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29531160

RESUMEN

The receptor-interacting protein kinase 1 (RIPK1) is an essential signaling molecule in pathways for cell survival, apoptosis, and necroptosis. We report here that RIPK1 is upregulated in human colorectal cancer and promotes cell proliferation when overexpressed in a colon cancer cell line. RIPK1 interacts with mitochondrial Ca2+ uniporter (MCU) to promote proliferation by increasing mitochondrial Ca2+ uptake and energy metabolism. The ubiquitination site of RIPK1 (RIPK1-K377) was critical for this interaction with MCU and function in promoting cell proliferation. These findings identify the RIPK1-MCU pathway as a promising target to treat colorectal cancer.Significance: RIPK1-mediated cell proliferation through MCU is a central mechanism underlying colorectal cancer progression and may prove to be an important therapeutic target for colorectal cancer treatment. Cancer Res; 78(11); 2876-85. ©2018 AACR.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Carcinogénesis/metabolismo , Neoplasias Colorrectales/metabolismo , Mitocondrias/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis/fisiología , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Neoplasias Colorrectales/patología , Metabolismo Energético/fisiología , Células HT29 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ubiquitinación/fisiología , Regulación hacia Arriba/fisiología
9.
Cardiovasc Res ; 113(13): 1615-1626, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29016703

RESUMEN

AIMS: Ischemic heart disease is a leading cause of morbidity and mortality worldwide. Although timely restoration of coronary blood flow (reperfusion) is the most effective therapeutics of myocardial infarction, reperfusion causes further cardiac damage, i.e. ischemia-reperfusion (I/R) injury. ß-arrestins (Arrbs) have been traditionally defined as negative regulators of G protein-coupled receptor (GPCR) signalling, but recent studies have shown that they are essential for G protein-independent, GPCR-mediated biased signalling. Several ligands have been reported to be cardioprotective via Arrbs dependent pathway. However, it is unclear whether Arrbs exert receptor-independent physiological or pathological functions in the heart. Here, we sought to determine whether and how Arrbs play a role in regulating cardiomyocyte viability and myocardial remodelling following I/R injury. METHODS AND RESULTS: The expression of ß-arrestin 2 (Arrb2), but not ß-arrestin 1 (Arrb1), is upregulated in rat hearts subjected to I/R injury, or in cultured neonatal rat cardiomyocytes treated with hypoxia-reoxygenation (H/R) injury. Deficiency of Arrb2 in cultured neonatal rat cardiomyocytes alleviates H/R-induced cardiomyocyte death and Arrb2-/- mice are resistant to myocardial damage caused by I/R injury. In contrast, upregulation of Arrb2 triggers cardiomyocyte death and exaggerates I/R (or H/R)-induced detrimental effects. Mechanically, Arrb2 induces cardiomyocyte death by interacting with the p85 subunit of PI3K, and negatively regulating the formation of p85-PI3K/CaV3 survival complex, thus blocking activation of PI3K-Akt-GSK3ß cell survival signalling pathway. CONCLUSION: We define an upregulation of Arrb2 as a pathogenic factor in cardiac I/R injury, and also reveal a novel GPCR-independent mechanism of Arrb2-mediated cell death signalling in the heart.


Asunto(s)
Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2/metabolismo , Animales , Caveolina 3/metabolismo , Muerte Celular , Supervivencia Celular , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Preparación de Corazón Aislado , Masculino , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/patología , Fenotipo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestina beta 2/deficiencia , Arrestina beta 2/genética
10.
Nat Commun ; 8: 16016, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28799539

RESUMEN

Though vascular smooth muscle cell (VSMC) proliferation underlies all cardiovascular hyperplastic disorders, our understanding of the molecular mechanisms responsible for this cellular process is still incomplete. Here we report that SRSF1 (serine/arginine-rich splicing factor 1), an essential splicing factor, promotes VSMC proliferation and injury-induced neointima formation. Vascular injury in vivo and proliferative stimuli in vitro stimulate SRSF1 expression. Mice lacking SRSF1 specifically in SMCs develop less intimal thickening after wire injury. Expression of SRSF1 in rat arteries enhances neointima formation. SRSF1 overexpression increases, while SRSF1 knockdown suppresses the proliferation and migration of cultured human aortic and coronary arterial SMCs. Mechanistically, SRSF1 favours the induction of a truncated p53 isoform, Δ133p53, which has an equal proliferative effect and in turn transcriptionally activates Krüppel-like factor 5 (KLF5) via the Δ133p53-EGR1 complex, resulting in an accelerated cell-cycle progression and increased VSMC proliferation. Our study provides a potential therapeutic target for vascular hyperplastic disease.


Asunto(s)
Traumatismos de las Arterias Carótidas/patología , Arteria Carótida Común/patología , Proliferación Celular/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Neointima/genética , Factores de Empalme Serina-Arginina/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Aorta/citología , Ciclo Celular , Células Cultivadas , Vasos Coronarios/citología , Técnicas de Silenciamiento del Gen , Humanos , Arterias Mamarias , Ratones , Ratones Noqueados , Isoformas de Proteínas , Ratas , Transducción de Señal
11.
Nat Med ; 22(2): 175-82, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26726877

RESUMEN

Regulated necrosis (necroptosis) and apoptosis are crucially involved in severe cardiac pathological conditions, including myocardial infarction, ischemia-reperfusion injury and heart failure. Whereas apoptotic signaling is well defined, the mechanisms that underlie cardiomyocyte necroptosis remain elusive. Here we show that receptor-interacting protein 3 (RIP3) triggers myocardial necroptosis, in addition to apoptosis and inflammation, through activation of Ca(2+)-calmodulin-dependent protein kinase (CaMKII) rather than through the well-established RIP3 partners RIP1 and MLKL. In mice, RIP3 deficiency or CaMKII inhibition ameliorates myocardial necroptosis and heart failure induced by ischemia-reperfusion or by doxorubicin treatment. RIP3-induced activation of CaMKII, via phosphorylation or oxidation or both, triggers opening of the mitochondrial permeability transition pore and myocardial necroptosis. These findings identify CaMKII as a new RIP3 substrate and delineate a RIP3-CaMKII-mPTP myocardial necroptosis pathway, a promising target for the treatment of ischemia- and oxidative stress-induced myocardial damage and heart failure.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Insuficiencia Cardíaca/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Isquemia Miocárdica/genética , Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/metabolismo , Necrosis/genética , Estrés Oxidativo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Animales , Antibióticos Antineoplásicos/toxicidad , Apoptosis/genética , Western Blotting , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Supervivencia Celular , Doxorrubicina/toxicidad , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/patología , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Poro de Transición de la Permeabilidad Mitocondrial , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/patología , Necrosis/etiología , Necrosis/patología , Fosforilación , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
12.
J Mol Med (Berl) ; 93(10): 1107-18, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25894383

RESUMEN

UNLABELLED: Proliferation and migration disorders of vascular smooth muscle cells (VSMCs) contribute to the pathogenesis of proliferative cardiovascular diseases. Although, over the past two decades, a large panel of drugs has been developed for targeting VSMC proliferation, cardiovascular disease remains the leading cause of death worldwide. Thus, there is a compelling need to identify novel signaling pathways and molecules controlling VSMC proliferation and migration, to provide not only mechanistic insights but also safe and effective therapies for the treatment of cardiovascular diseases. Our recent studies have demonstrated that p55γ, a regulatory subunit of phosphoinositide 3-kinase, functions as an endogenous brake on VSMC proliferation. Here, we demonstrate that the small peptide N24, the first 24 amino acids of the NH2 terminus of p55γ, is a functional mimetic which negatively regulates VSMC proliferation and migration. Specifically, luminal delivery of adenovirus expressing N24 or local administration of Tat transactivator protein (TAT)-tagged N24 by pluronic gel alleviates neointimal formation following balloon injury in rat carotid arteries. Enforced expression of N24 suppresses the proliferation and migration of VSMCs induced by serum- or platelet-derived growth factor-BB. Mechanistically, N24 induces cell cycle arrest via activating the p53-p21 signal pathway, without triggering cell death. N24 interacts with and stabilizes p53 by blocking its ubiquitin-dependent degradation, subsequently promotes p21 transcription, and arrests cell cycle progression. Indeed, knockdown of p21 or p53 abrogates the N24-mediated cell growth arrest. Thus, N24 is a p55γ mimetic inhibiting VSMC proliferation as well as migration, thereby conferring important therapeutic implications for anti-proliferative treatment. KEY MESSAGE: • N24 attenuates balloon injury-induced neointimal formation. • Overexpression of N24 inhibits cultured VSMC proliferation and migration. • Overexpression of N24 arrests the cell cycle at S phase. • N24 interacts with and stabilizes p53 resulting in growth suppression.


Asunto(s)
Miocitos del Músculo Liso/efectos de los fármacos , Neointima/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/uso terapéutico , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/farmacología , Fosfatidilinositol 3-Quinasas/uso terapéutico , Angioplastia de Balón/efectos adversos , Animales , Aorta Torácica/citología , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/patología , Recuento de Células , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Productos del Gen tat/farmacología , Masculino , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/fisiología , Neointima/patología , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/metabolismo , Cicatrización de Heridas/efectos de los fármacos
13.
Clin Exp Pharmacol Physiol ; 42(4): 415-25, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25676548

RESUMEN

Cardiac glycogen regulation involves a complex interplay between multiple signalling pathways, allosteric activation of enzymes, and sequestration for autophagic degradation. Signalling pathways appear to converge on glycogen regulatory enzymes via insulin (glycogen synthase kinase 3ß, protein phosphatase 1, allosteric action of glucose-6-phosphate), ß-adrenergic (phosphorylase kinase protein phosphatase 1 inhibitor), and 5' adenosine monophosphate-activated protein kinase (allosteric action of glucose-6-phosphate, direct glycogen binding, insulin receptor). While cytosolic glycogen synthesis and breakdown are relatively well understood, recent findings relating to phagic glycogen degradation highlight a new area of investigation in the heart. It has been recently demonstrated that a specific glycophagy pathway is operational in the myocardium. Proteins involved in recruiting glycogen to the forming phagosome have been identified. Starch-binding domain-containing protein 1 is involved in binding glycogen and mediating membrane anchorage via interaction with a homologue of the phagosomal protein light-chain 3. Specifically, it has been shown that starch-binding domain-containing protein 1 and light-chain 3 have discrete phagosomal immunolocalization patterns in cardiomyocytes, indicating that autophagic trafficking of glycogen and protein cargo in cardiomyocytes can occur via distinct pathways. There is strong evidence from glycogen storage diseases that phagic/lysosomal glycogen breakdown is important for maintaining normal cardiac glycogen levels and does not simply constitute a redundant 'alternative' breakdown route for glycogen. Advancing understanding of glycogen handling in the heart is an important priority with relevance not only to genetic glycogen storage diseases but also to cardiac metabolic stress disorders such as diabetes and ischaemia.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/metabolismo , Glucógeno/metabolismo , Cardiopatías/metabolismo , Miocardio/metabolismo , Animales , Metabolismo Energético , Enfermedad del Almacenamiento de Glucógeno/patología , Enfermedad del Almacenamiento de Glucógeno/fisiopatología , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Cinética , Lisosomas/metabolismo , Miocardio/patología , Fagosomas/metabolismo , Transducción de Señal
14.
Cardiovasc Res ; 105(1): 75-85, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25388664

RESUMEN

AIMS: Phosphatidylinositol 3 kinases (PI3Ks) play a pivotal role in vascular physiology and pathophysiology. We aimed to investigate the role of p55γ, a regulatory subunit of PI3Ks, in vascular smooth muscle cell (VSMC) proliferation and neointimal formation. METHODS AND RESULTS: We identified p55γ as an important factor that suppresses VSMC proliferation and injury-evoked neointimal formation. Western blot and mRNA analyses showed that p55γ expression declined in balloon-injured rat carotid arteries and in response to PDGF-BB and serum treatment in cultured VSMCs. Overexpression of p55γ inhibited, whereas short hairpin RNA knockdown of p55γ promoted PDGF-BB- and serum-induced VSMC proliferation. Importantly, in vivo adenoviral gene transfer of p55γ into carotid arteries attenuated, while knockdown of p55γ enhanced balloon injury-induced neointimal formation. Furthermore, p55γ sequentially up-regulated p53 and p21, resulting in cell-cycle arrest in S phase; small-interfering RNA knockdown of either p53 or p21 blocked p55γ-induced VSMC growth arrest. Mechanistically, p55γ interacted with and stabilized p53 protein by blocking mouse double minute 2 homologue-mediated p53 ubiquitination and degradation, subsequently activating its target gene p21. Concurrently, p55γ up-regulated Bcl-xl expression, resulting in non-apoptotic growth arrest effect. CONCLUSION: These findings mark p55γ as a novel upstream regulator of the p53-p21 signalling pathway that negatively regulates VSMC proliferation, suggesting that malfunction of p55γ may trigger vascular proliferative disorders.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/patología , Neointima/enzimología , Neointima/prevención & control , Animales , Traumatismos de las Arterias Carótidas/enzimología , Traumatismos de las Arterias Carótidas/patología , Puntos de Control del Ciclo Celular , Proliferación Celular , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Neointima/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
15.
Oncol Lett ; 6(4): 980-984, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24137449

RESUMEN

The present study aimed to identify the molecular pathological changes of the nasopharyngeal carcinoma (NPC) epithelial CNE3 cell line, which has been used in experimental studies for 20 years in a culture environment. The pathological type of NPC and the presence of the Epstein-Barr virus (EBV) were identified. CNE3 short tandem repeats (STRs) were amplified, analyzed and compared using metastatic carcinoma tissue from primary NPC. Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to identify the immunophenotype and EBV-encoded small RNA (EBER) expression in nude mice transplanted CNE3 tumor cells. Polymerase chain reaction (PCR) and DNA sequencing were used to identify the EBV oncogene, BamH1-A right frame 1 (BARF1) and electron microscopy was used to analyze the organization of the ultrastructure. CNE3 was not cross-contaminated by other human cell lines and the EBV was no longer present in the CNE3 cells. The pathological type of CNE3 was transformed from an undifferentiated non-keratinizing carcinoma with focal adenocarcinoma differentiation into a poorly-differentiated adenocarcinoma. In conclusion, this knowledge on the molecular pathological changes of CNE3 may aid in the development of new research approaches for NPC.

17.
Asian Pac J Cancer Prev ; 14(11): 6315-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24377524

RESUMEN

To study the differentiated expression of the proto-oncogene Pokemon in nasopharyngeal carcinoma (NPC) cell lines and tissues, mRNA and protein expression levels of CNE1, CNE2, CNE3 and C666-1 were detected separately by reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and Western-blotting. The immortalized nasopharyngeal epithelial cell line NP69 was used as a control. The Pokemon protein expression level in biopsy specimens from chronic rhinitis patients and undifferentiated non keratinizing NPC patients was determined by Western-blotting and arranged from high to low: C666-1>CNE1>CNE2> CNE3>NP69. The Pokemon mRNA expression level was also arranged from high to low: CNE1>CNE2>NP69>C666-1>CNE3. Pokemon expression of NP69 and C666-1 obviously varied from mRNA to protein. The Pokemon protein level of NPC biopsy specimens was obviously higher than in chronic rhinitis. The data suggest that high Pokemon protein expression is closely associated with undifferentiated non-keratinizing NPC and may provide useful information for NPC molecular target therapy.


Asunto(s)
Proteínas de Unión al ADN/genética , Neoplasias Nasofaríngeas/genética , Proto-Oncogenes , Factores de Transcripción/genética , Biopsia , Carcinoma , Diferenciación Celular/genética , Línea Celular , Línea Celular Tumoral , Células Epiteliales/metabolismo , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Proto-Oncogenes Mas , ARN Mensajero/genética , Rinitis/genética
19.
Sci Transl Med ; 4(139): 139ra85, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22723464

RESUMEN

Mitsugumin 53 (MG53), a muscle-specific TRIM family protein, is an essential component of the cell membrane repair machinery. Here, we examined the translational value of targeting MG53 function in tissue repair and regenerative medicine. Although native MG53 protein is principally restricted to skeletal and cardiac muscle tissues, beneficial effects that protect against cellular injuries are present in nonmuscle cells with overexpression of MG53. In addition to the intracellular action of MG53, injury to the cell membrane exposes a signal that can be detected by MG53, allowing recombinant MG53 protein to repair membrane damage when provided in the extracellular space. Recombinant human MG53 (rhMG53) protein purified from Escherichia coli fermentation provided dose-dependent protection against chemical, mechanical, or ultraviolet-induced damage to both muscle and nonmuscle cells. Injection of rhMG53 through multiple routes decreased muscle pathology in the mdx dystrophic mouse model. Our data support the concept of targeted cell membrane repair in regenerative medicine, and present MG53 protein as an attractive biological reagent for restoration of membrane repair defects in human diseases.


Asunto(s)
Proteínas Portadoras/uso terapéutico , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/metabolismo , Animales , Western Blotting , Células CHO , Línea Celular , Línea Celular Tumoral , Cricetinae , Humanos , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteínas de Motivos Tripartitos
20.
Acta Pharmacol Sin ; 33(3): 335-41, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22286918

RESUMEN

ß-adrenergic receptor (ßAR) stimulation by the sympathetic nervous system or circulating catecholamines is broadly involved in peripheral blood circulation, metabolic regulation, muscle contraction, and central neural activities. In the heart, acute ßAR stimulation serves as the most powerful means to regulate cardiac output in response to a fight-or-flight situation, whereas chronic ßAR stimulation plays an important role in physiological and pathological cardiac remodeling.There are three ßAR subtypes, ß(1)AR, ß(2)AR and ß(3)AR, in cardiac myocytes. Over the past two decades, we systematically investigated the molecular and cellular mechanisms underlying the different even opposite functional roles of ß(1)AR and ß(2)AR subtypes in regulating cardiac structure and function, with keen interest in the development of novel therapies based on our discoveries. We have made three major discoveries, including (1) dual coupling of ß(2)AR to G(s) and G(i) proteins in cardiomyocytes, (2) cardioprotection by ß(2)AR signaling in improving cardiac function and myocyte viability, and (3) PKA-independent, CaMKII-mediated ß(1)AR apoptotic and maladaptive remodeling signaling in the heart. Based on these discoveries and salutary effects of ß(1)AR blockade on patients with heart failure, we envision that activation of ß(2)AR in combination with clinically used ß(1)AR blockade should provide a safer and more effective therapy for the treatment of heart failure.


Asunto(s)
Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Receptores Adrenérgicos beta/clasificación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA