Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Discov Nano ; 18(1): 101, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37581715

RESUMEN

Adverse skin reactions caused by ionizing radiation are collectively called radiation dermatitis (RD), and the use of nanomedicine is an attractive approach to this condition. Therefore, we designed and large-scale synthesized fullerenols that showed free radical scavenging ability in vitro. Next, we pretreated X-ray-exposed cells with fullerenols. The results showed that pretreatment with fullerenols significantly scavenged intracellular reactive oxygen species (ROS) produced and enhanced the antioxidant capacity, protecting skin cells from X-ray-induced DNA damage and apoptosis. Moreover, we induced RD in mice by applying 30 Gy of X-ray irradiation, followed by treatment with fullerenols. We found that after treatment, the RD scores dropped, and the histological results systematically demonstrated that topically applied fullerenols could reduce radiation-induced skin epidermal thickening, collagen deposition and skin appendage damage and promote hair regeneration after 35 days. Compared with Trolamine cream, a typical RD drug, fullerenols showed superior radiation protection. Overall, the in vitro and in vivo experiments proved that fullerenols agents against RD.

2.
ACS Omega ; 7(35): 31442-31447, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092566

RESUMEN

A molecular tweezer trans-di(perylene-3-ylmethanaminobenzo)-18-crown-6 (DP-18C6) incorporating two perylene subunits in a single crown ether core was designed and synthesized as a host for fullerenes. Through the cooperative effect of the perylene subunits and the crown ether moiety, DP-18C6 can efficiently recognize fullerenes including C60, C70, and C76. 1H NMR titration and fluorescence titration experiments demonstrated that DP-18C6 can effectively grasp the fullerene molecule to form a 1:1 host-guest complex. Density functional theory calculations revealed the presence of intermolecular π-π interactions between the perylene subunits of DP-18C6 and the fullerene molecule. More importantly, DP-18C6 exhibited remarkably high binding selectivity for higher fullerenes over C60, revealing potential application for the separation of fullerenes by means of host-guest interactions.

3.
Science ; 376(6590): 288-292, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35420967

RESUMEN

Bulk chemicals such as ethylene glycol (EG) can be industrially synthesized from either ethylene or syngas, but the latter undergoes a bottleneck reaction and requires high hydrogen pressures. We show that fullerene (exemplified by C60) can act as an electron buffer for a copper-silica catalyst (Cu/SiO2). Hydrogenation of dimethyl oxalate over a C60-Cu/SiO2 catalyst at ambient pressure and temperatures of 180° to 190°C had an EG yield of up to 98 ± 1%. In a kilogram-scale reaction, no deactivation of the catalyst was seen after 1000 hours. This mild route for the final step toward EG can be combined with the already-industrialized ambient reaction from syngas to the intermediate of dimethyl oxalate.

4.
Nanoscale ; 9(45): 17893-17901, 2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29119988

RESUMEN

Organic-inorganic perovskite solar cells have emerged as a promising photovoltaic technology because of their advantages such as low cost, high efficiency, and solution processability. The performance of perovskite solar cells is highly dependent on the crystallinity and morphology of the perovskite films. Herein, we report a simple, one-step anti-solvent deposition process using di-isopropyl ether as a dripping solvent to obtain extremely uniform and highly crystalline CH3NH3PbI3 perovskite films. Compared to toluene, chlorobenzene, chloroform, or diethyl ether, di-isopropyl ether has proven to be a more suitable solvent for an anti-solvent deposition process. The perovskite solar cells fabricated by the anti-solvent deposition process using di-isopropyl ether treatment exhibit an average power conversion efficiency (PCE) of 17.67 ± 0.54% and the highest PCE of 19.07%. Moreover, the higher boiling point of di-isopropyl ether makes the anti-solvent deposition process more tolerant to elevated ambient temperature, which can be carried out at ambient temperatures up to 40 °C. Our results demonstrate that di-isopropyl ether is an excellent dripping solvent in the anti-solvent deposition process for efficient and reproducible perovskite solar cells.

5.
Colloids Surf B Biointerfaces ; 159: 613-619, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28858664

RESUMEN

Fullerenes with novel structures find numerous potential applications, particularly in the fields of biology and pharmaceutics. Among various fullerene derivatives, those exhibiting amphiphilic character and capable of self-assembly into vesicles are particularly interesting, being suitable for delayed drug release. Herein, we report the synthesis and self-assembly of biocompatible hollow nanovesicles with bilayer shells from amphiphilic functionalized fullerenes C60R5Cl (R=methyl ester of 4-aminobutyric/glutamic acid or phenylalanine). The thus prepared vesicles exhibit sizes of 80-135nm (depending on R) and can be used as delayed-release carriers of anti-cancer drugs such as 5-fluorouracil, cyclophosphamide, and cisplatin, with the time of 5-fluorouracil release from drug-containing vesicles exceeding that of non-encapsulated forms by a factor of three. We further reveal the effect of R on the loading amount and release rate/amount of vesicle-encapsulated drugs, demonstrating a potential pharmaceutical application of the prepared nanovesicles depending on the nature of R.


Asunto(s)
Aminoácidos/química , Antineoplásicos/química , Cloruros/química , Liberación de Fármacos , Fulerenos/química , Cisplatino/química , Ciclofosfamida/química , Sistemas de Liberación de Medicamentos/métodos , Fluorouracilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA