Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445626

RESUMEN

Metabolites play critical roles in macrophage polarization and in their function in response to infection and inflammation. α-aminobutyric acid (AABA), a non-proteinogenic amino acid which can be generated from methionine, threonine, serine, and glycine, has not been studied extensively in relation to macrophage polarization and function. In this study, we aimed to investigate the immunomodulatory function of AABA in regulating M1 macrophage polarization and function in vitro and in vivo. We stimulated bone-marrow-derived macrophages with lipopolysaccharide (LPS) to generate M1 macrophages. Subsequently, we induced sepsis and colitis in mice, followed by treatment with AABA. We then analyzed the samples using ELISA, real-time PCR, Western blotting, flow cytometry, and histopathological analysis to evaluate cytokine secretion, inflammatory gene expression, macrophage activation, disease progression, and inflammation severity. Additionally, metabolomic and chromatin immunoprecipitation-qPCR were conducted to investigate the function of AABA on metabolic reprogramming and epigenetic modifications of M1 macrophages. Our results revealed that AABA inhibited M1 macrophage polarization and function, which led to prolonged survival in septic mice and reduced disease severity in colitis mice. Mechanically, AABA promoted oxidative phosphorylation (OXPHOS) and glutamine and arginine metabolism while inhibiting glycolysis. Moreover, AABA could increase the occupancy of trimethylation of histone H3K27 at the promoter regions of M1 macrophage-associated inflammatory genes, which contributed to the inhibition of M1 macrophage polarization. These findings suggest that AABA may have therapeutic potential for inflammatory diseases by regulating macrophage polarization and function through metabolic and epigenetic pathways.


Asunto(s)
Colitis , Macrófagos , Ratones , Animales , Macrófagos/metabolismo , Inflamación/metabolismo , Colitis/genética , Colitis/metabolismo , Epigénesis Genética , Lipopolisacáridos/farmacología , Activación de Macrófagos
2.
Molecules ; 27(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011549

RESUMEN

Angelica sinensis, a perennial herb that produces ferulic acid and phthalides for the treatment of cardio-cerebrovascular diseases, prefers growing at an altitude of 1800-3000 m. Geographical models have predicted that high altitude, cool temperature and sunshade play determining roles in geo-authentic formation. Although the roles of altitude and light in yield and quality have been investigated, the role of temperature in regulating growth, metabolites biosynthesis and gene expression is still unclear. In this study, growth characteristics, metabolites contents and related genes expression were investigated by exposing A. sinensis to cooler (15 °C) and normal temperatures (22 °C). The results showed that plant biomass, the contents of ferulic acid and flavonoids and the expression levels of genes related to the biosynthesis of ferulic acid (PAL1, 4CLL4, 4CLL9, C3H, HCT, CCOAMT and CCR) and flavonoids (CHS and CHI) were enhanced at 15 °C compared to 22 °C. The contents of ligustilide and volatile oils exhibited slight increases, while polysaccharide contents decreased in response to cooler temperature. Based on gene expression levels, ferulic acid biosynthesis probably depends on the CCOAMT pathway and not the COMT pathway. It can be concluded that cool temperature enhances plant growth, ferulic acid and flavonoid accumulation but inhibits polysaccharide biosynthesis in A. sinensis. These findings authenticate that cool temperature plays a determining role in the formation of geo-authentic and also provide a strong foundation for regulating metabolites production of A. sinensis.


Asunto(s)
Angelica sinensis/fisiología , Frío , Ácidos Cumáricos/metabolismo , Flavonoides/biosíntesis , Polisacáridos/biosíntesis , 4-Butirolactona/análogos & derivados , Metabolismo de los Hidratos de Carbono , Regulación de la Expresión Génica de las Plantas , Aceites Volátiles , Aceites de Plantas , Fenómenos Fisiológicos de las Plantas
3.
J Leukoc Biol ; 110(6): 1057-1067, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34612525

RESUMEN

Iron plays a critical role in immune responses. However, its role in T helper cell differentiation and function remains poorly understood. In this study, it is shown that the restraint of iron availability through blocking CD71-mediated iron endocytosis impaired the differentiation and pathogenicity of TH 17 cells. Administrations of anti-CD71 mAb could relieve the development of experimental autoimmune encephalomyelitis (EAE). Mechanistically, the iron deficiency due to the blocking of CD71 enhanced IL-2 expression, which further restrained the differentiation of TH 17 cells. Meanwhile, CD71 blockade impaired histone modifications of Il17 gene and reduced the recruitment of RORγt to Il17a locus. In sum, the findings reveal that iron plays a pivotal role in regulating TH 17 cell differentiation and function in autoimmune diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Hierro/inmunología , Hierro/metabolismo , Células Th17/inmunología , Animales , Antígenos CD/inmunología , Antígenos CD/metabolismo , Diferenciación Celular/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Transferrina/inmunología , Receptores de Transferrina/metabolismo , Células Th17/metabolismo
4.
J Cancer Res Ther ; 14(Supplement): S1035-S1040, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30539842

RESUMEN

AIM: Norcantharidin (NCTD) has been used as a clinical antineoplastic drug in China for several years, and diamminedichloroplatinum is a valuable clinical cancer chemotherapy agent. Here, we tried to investigate the effects of NCTD plus diamminedichloroplatinum on hepatic carcinoma in murine. MATERIALS AND METHODS: In vivo and in vitro investigations on anticancer effects of the two drugs were individually made. RESULT: In vitro, the combination of the two drugs resulted in apparent apoptosis and cell proliferation inhibitions of H22 cancer cells. Meanwhile, their coadministration in vivo produced significant suppressions of tumor growth and cancerometastasis. Further, CD31 immunohistochemistry and matrigel tube formation assay demonstrated that angiogenesis was inhibited by NCTD plus diamminedichloroplatinum in vivo and in vitro, respectively. CONCLUSION: Based on the findings, we concluded that NCTD plus diamminedichloroplatinum may have an additive anticancer efficacy because the two drugs work in different ways, and thus, their combination had inhibited cancer cell proliferations and tumor angiogenesis more effectively than either of the compounds alone.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Cisplatino/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Carcinoma Hepatocelular/secundario , Línea Celular Tumoral/trasplante , Proliferación Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Humanos , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Resultado del Tratamiento
5.
Cancer Biother Radiopharm ; 33(1): 25-31, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29466034

RESUMEN

Cancer vaccines mostly aim to induce cytotoxic T lymphocytes (CTLs) against tumors. An appropriate adjuvant is of fundamental importance for inducing cellular immune response. Since the antigen in particulate form is substantially more immunogenic than soluble form antigen, it is beneficial to interact with antigen-presenting cells membrane to induce robust CD8+ T cell activation following vaccination. Based on previous research, we designed an adjuvant formulation by combining Astragalus saponins, cholesterol, and liposome to incorporate antigen into a particulate delivery system, so as to enhance cellular immune response. Meanwhile, angiogenesis contributes to tumor growth and metastasis, and basic fibroblast growth factor (bFGF) is involved in tumor angiogenesis. Therefore, using lipo-saponins adjuvant formulation and a human recombinant bFGF antigen protein, we tried to induce bFGF-specific CTL response to inhibit tumor angiogenesis to achieve antitumor activity. After five immunizations, the lipo-saponins/bFGF complex elicited robust antibody response and markedly higher amount of interferon-γ in BALB/c mice, resulting in superior antitumor activities. Decreased microvessel density in CD31 immunohistochemistry and the lysis of vascular endothelial cells by the T lymphocytes from the immunized mice indicated that the immunity inhibited the angiogenesis of tumors and further led to the inhibition of tumors. Our data suggest that the approach to construct adjuvant formulation between liposome and Astragalus saponins appeared highly desirable, and that Astragalus saponins may be utilized as a valuable additive for enhancing the effectiveness of vaccines and stimulating an appropriate immune response that can benefit tumor therapy.


Asunto(s)
Adyuvantes Inmunológicos/química , Vacunas contra el Cáncer/química , Liposomas/química , Saponinas/química , Saponinas/inmunología , Secuencia de Aminoácidos , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C
6.
Cancer Biol Ther ; 19(6): 518-524, 2018 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-29405828

RESUMEN

Tumor growth and metastasis are closely related to angiogenesis. Basic fibroblast growth factor(bFGF) is an angiogenic factor, and up-regulated expression of bFGF plays a crucial role in the development and metastasis of melanoma. Therefore, in this study, we sought to achieve antitumor activity by immunity targeting bFGF which would inhibit tumor angiogenesis and simultaneously induce bFGF specific cytotoxic T lymphocytes to kill melanoma cells. A human bFGF protein was used as exogenous antigen, coupled with a saponin-liposome adjuvant formulation to enhance CTL response. The results showed that the immunity induced strong immune response and produced prominent anti-cancer activities. CD31 immunohistochemistry and alginate-encapsulated tumor cell assay displayed that tumor angiogenesis was effectively inhibited. Further, the higher production of IFN-γ and cytotoxic T lymphocyte killing assay suggested that the anti-cancer activities may mainly depend on cellular immune response, which could cause the inhibition of tumor angiogenesis and specific killing of tumor cells by bFGF-specific cytotoxic T lymphocytes. We concluded that immunotherapy targeting bFGF may be a prominent strategy for melanoma, and that the adjuvant formulation of saponin-liposome is very desirable in enhancing cytotoxic T lymphocytes response.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Factor 2 de Crecimiento de Fibroblastos/inmunología , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Animales , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Melanoma/patología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA