Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(1): 36-54, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31745548

RESUMEN

Huntington disease (HD) is a fatal neurodegenerative disease caused by a pathogenic expansion of a CAG repeat in the huntingtin (HTT) gene. There are no disease-modifying therapies for HD. Artificial microRNAs targeting HTT transcripts for degradation have shown preclinical promise and will soon enter human clinical trials. Here, we examine the tolerability and efficacy of non-selective HTT lowering with an AAV5 encoded miRNA targeting human HTT (AAV5-miHTT) in the humanized Hu128/21 mouse model of HD. We show that intrastriatal administration of AAV5-miHTT results in potent and sustained HTT suppression for at least 7 months post-injection. Importantly, non-selective suppression of huntingtin was generally tolerated, however high dose AAV5-miHTT did induce astrogliosis. We observed an improvement of select behavioural and modest neuropathological HD-like phenotypes in Hu128/21 mice, suggesting a potential therapeutic benefit of miRNA-mediated non-selective HTT lowering. Finally, we also observed that potent reduction of wild type HTT (wtHTT) in Hu21 control mice was tolerated up to 7 months post-injection but may induce impairment of motor coordination and striatal atrophy. Taken together, our data suggests that in the context of HD, the therapeutic benefits of mHTT reduction may outweigh the potentially detrimental effects of wtHTT loss following non-selective HTT lowering.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/terapia , MicroARNs/genética , Terapia Molecular Dirigida/métodos , Parvovirinae/genética , ARN Mensajero/genética , Animales , Animales Modificados Genéticamente , Astrocitos/metabolismo , Astrocitos/patología , Secuencia de Bases , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Dependovirus , Modelos Animales de Enfermedad , Dosificación de Gen , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Proteína Huntingtina/antagonistas & inhibidores , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , MicroARNs/administración & dosificación , MicroARNs/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Parvovirinae/metabolismo , Desempeño Psicomotor , Estabilidad del ARN , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , Repeticiones de Trinucleótidos
2.
Sci Transl Med ; 10(461)2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282695

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) protein, resulting in acquisition of toxic functions. Previous studies have shown that lowering mutant HTT has the potential to be broadly beneficial. We previously identified HTT single-nucleotide polymorphisms (SNPs) tightly linked to the HD mutation and developed antisense oligonucleotides (ASOs) targeting HD-SNPs that selectively suppress mutant HTT. We tested allele-specific ASOs in a mouse model of HD. Both early and late treatment reduced cognitive and behavioral impairments in mice. To determine the translational potential of the treatment, we examined the effect of ASO administration on HTT brain expression in nonhuman primates. The treatment induced robust HTT suppression throughout the cortex and limbic system, areas implicated in cognition and psychiatric function. The results suggest that ASOs specifically targeting mutated HTT might have therapeutic effects on HD-mediated cognitive impairments.


Asunto(s)
Cognición , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Animales , Ansiedad/complicaciones , Ansiedad/patología , Ansiedad/fisiopatología , Atrofia/patología , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Femenino , Humanos , Enfermedad de Huntington/complicaciones , Enfermedad de Huntington/patología , Sistema Límbico/patología , Masculino , Proteínas Mutantes/metabolismo , Oligonucleótidos Antisentido/farmacología , Primates
3.
Hum Mol Genet ; 27(2): 239-253, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29121340

RESUMEN

Oxidative stress is a prominent feature of Huntington disease (HD), and we have shown previously that reduced levels of hace1 (HECT domain and Ankyrin repeat containing E3 ubiquitin protein ligase 1) in patient striatum may contribute to the pathogenesis of HD. Hace1 promotes the stability of Nrf2 and thus plays an important role in antioxidant response mechanisms, which are dysfunctional in HD. Moreover, hace1 overexpression mitigates mutant huntingtin (mHTT)-induced oxidative stress in vitro through promotion of the Nrf2 antioxidant response. Here, we show that the genetic ablation of hace1 in the YAC128 mouse model of HD accelerates motor deficits and exacerbates cognitive and psychiatric phenotypes in vivo. We find that both the expression of mHTT and the ablation of hace1 alone are sufficient to cause deficits in astrocytic mitochondrial respiration. We confirm the crucial role of hace1 in astrocytes in vivo, since its ablation is sufficient to cause dramatic astrogliosis in wild-type FVB/N mice. Astrogliosis is not observed in the presence of mHTT but a strong dysregulation in the expression of astrocytic markers in HACE1-/- x YAC128 striatum suggests an additive effect of mHTT expression and hace1 loss on this cell type. HACE1-/- x YAC128 mice and primary cells derived from these animals therefore provide model systems that will allow for the further dissection of Nrf2 pathways and astrocyte dysfunction in the context of HD.


Asunto(s)
Astrocitos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neostriado/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo/fisiología
4.
Hum Mol Genet ; 19(8): 1528-38, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20097678

RESUMEN

Levels of full-length huntingtin (FL htt) influence organ and body weight, independent of polyglutamine length. The growth hormone-insulin like growth factor-1 (GH-IGF-1) axis is well established as a regulator of organ growth and body weight. In this study, we investigate the involvement of the IGF-1 pathway in mediating the effect of htt on body weight. IGF-1 expression was examined in transgenic mouse lines expressing different levels of FL wild-type (WT) htt (YAC18 mice), FL mutant htt (YAC128 and BACHD mice) and truncated mutant htt (shortstop mice). We demonstrate that htt influences body weight by modulating the IGF-1 pathway. Plasma IGF-1 levels correlate with body weight and htt levels in the transgenic YAC mice expressing human htt. The effect of htt on IGF-1 expression is independent of CAG size. No effect on body weight is observed in transgenic YAC mice expressing a truncated N-terminal htt fragment (shortstop), indicating that FL htt is required for the modulation of IGF-1 expression. Treatment with 17beta-estradiol (17beta-ED) lowers the levels of circulating IGF-1 in mammals. Treatment of YAC128 with 17beta-ED, but not placebo, reduces plasma IGF-1 levels and decreases the body weight of YAC128 animals to WT levels. Furthermore, given the ubiquitous expression of IGF-1 within the central nervous system, we also examined the impact of FL htt levels on IGF-1 expression in different regions of the brain, including the striatum, cerebellum of YAC18, YAC128 and littermate WT mice. We demonstrate that the levels of FL htt influence IGF-1 expression in striatal tissues. Our data identify a novel function for FL htt in influencing IGF-1 expression.


Asunto(s)
Peso Corporal , Enfermedad de Huntington/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Transducción de Señal
5.
Brain Cell Biol ; 36(5-6): 213-27, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19238548

RESUMEN

In the peripheral nervous system (PNS), root avulsion causes motoneuron degeneration, but the majority of motoneurons can survive axotomy. In order to study the mechanism of motoneuron degeneration, we compared the expression patterns of c-jun and neuronal nitric oxide synthase (nNOS), the well-known molecular players in PNS regeneration and degeneration, among adult rats having undergone axotomy (Ax), avulsion (Av), or pre-axotomy plus secondary avulsion (Ax + Av) of the brachial plexus. Our results showed that the highest and longest-lasting c-jun activation occurred in Ax, which was much stronger than those in Av and Ax + Av. The time course and intensity of c-jun expression in Ax + Av were similar to those in Av except on day 1, while the pre-axotomy condition resulted in a transient up-regulation of c-jun to a level comparable to that in Ax. Axotomy alone did not induce nNOS expression in motoneurons. Pre-axotomy left-shifted the time course of nNOS induction in Ax + Av compared to that in Av. Motoneuron loss was not evident in Ax, while it was 70% in Av and more than 85% in Ax + Av at 8 weeks postinjury. The survival of motoneurons was positively correlated with c-jun induction, but not with nNOS expression in motoneurons. Moreover, c-jun induction was negatively correlated with nNOS induction in injured motoneurons. Our results indicate that functional crosstalk between c-jun and nNOS might play an important role in avulsion-induced motoneuron degeneration, while c-jun might act as a prerequisite survival factor and nNOS might act as a predictor for the onset of motoneuron degeneration.


Asunto(s)
Axones/metabolismo , Axotomía , Neuronas Motoras/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Radiculopatía , Análisis de Varianza , Animales , Axones/patología , Recuento de Células/estadística & datos numéricos , Femenino , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Neuronas Motoras/citología , Neuronas Motoras/patología , Degeneración Nerviosa/etiología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Regeneración Nerviosa , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Regulación hacia Arriba
6.
J Neurosci ; 27(36): 9545-59, 2007 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-17804616

RESUMEN

Transplantation of exogenous cells is one approach to spinal cord repair that could potentially enhance the growth and myelination of endogenous axons. Here, we asked whether skin-derived precursors (SKPs), a neural crest-like precursor that can be isolated and expanded from mammalian skin, could be used to repair the injured rat spinal cord. To ask this question, we isolated and expanded genetically tagged murine SKPs and either transplanted them directly into the contused rat spinal cord or differentiated them into Schwann cells (SCs), and performed similar transplantations with the isolated, expanded SKP-derived SCs. Neuroanatomical analysis of these transplants 12 weeks after transplantation revealed that both cell types survived well within the injured spinal cord, reduced the size of the contusion cavity, myelinated endogenous host axons, and recruited endogenous SCs into the injured cord. However, SKP-derived SCs also provided a bridge across the lesion site, increased the size of the spared tissue rim, myelinated spared axons within the tissue rim, reduced reactive gliosis, and provided an environment that was highly conducive to axonal growth. Importantly, SKP-derived SCs provided enhanced locomotor recovery relative to both SKPs and forebrain subventricular zone neurospheres, and had no impact on mechanical or heat sensitivity thresholds. Thus, SKP-derived SCs provide an accessible, potentially autologous source of cells for transplantation into and treatment of the injured spinal cord.


Asunto(s)
Vaina de Mielina/metabolismo , Células de Schwann/trasplante , Piel/citología , Traumatismos de la Médula Espinal/terapia , Células Madre/citología , Animales , Axones/metabolismo , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Supervivencia de Injerto , Masculino , Ratones , Ratones Transgénicos , Actividad Motora , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Células de Schwann/citología , Células de Schwann/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Trasplante de Células Madre , Resultado del Tratamiento , Heridas no Penetrantes
7.
J Neurotrauma ; 20(6): 603-12, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12906744

RESUMEN

In the present study, we examined the effects of glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and insulin growth factor (IGF-1) on adult motoneuron survival following spinal root avulsion. The expression of neuronal nitric oxide synthase (nNOS), c-Jun, and the low-affinity neurotrophin receptor (P75) following treatment with these neurotrophic factors was also examined. In control animals, approximately 80% of spinal motoneurons were nNOS positive at 3 weeks following the lesion, whereas in GDNF or BDNF treated animals no nNOS positive motoneurons were found at the same time point. Following injury and treatment with GDNF and BDNF increased numbers of motoneurons were c-Jun and P75 positive. By 6 weeks following the lesion, only approximately 28% of motoneurons persisted in control animals whereas about 90% of motoneurons survived injury following treatment with either GDNF or BDNF. In contrast, CNTF and IGF-1 were ineffective in either inhibiting nNOS expression or preventing motoneuron death. Our results provide in vivo evidence that the survival of injured adult mammalian motoneurons can be promoted by specific neurotrophic factors, and that this effect is associated with inhibition of nNOS expression and up-regulation of c-Jun and P75 expression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Factores de Crecimiento Nervioso/farmacología , Óxido Nítrico Sintasa/biosíntesis , Proteínas Proto-Oncogénicas c-jun/biosíntesis , Radiculopatía/metabolismo , Receptores de Factor de Crecimiento Nervioso/biosíntesis , Animales , Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial , Masculino , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Factores de Crecimiento Nervioso/uso terapéutico , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo I , Proteínas Proto-Oncogénicas c-jun/genética , Radiculopatía/tratamiento farmacológico , Radiculopatía/patología , Ratas , Ratas Sprague-Dawley , Receptor de Factor de Crecimiento Nervioso , Receptores de Factor de Crecimiento Nervioso/genética
8.
Dev Neurosci ; 25(1): 72-8, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12876433

RESUMEN

Axonal injury in peripheral nerve results in massive motoneuron loss during development. The purpose of this study was to examine the response of phagocytic populations (brain macrophages, BMOs, versus microglia) after different types of axonal lesions (distal axotomy or avulsion) in newborn rats. The morphology, spatial location and activation state of these inflammatory cells were observed. Following spinal root avulsion, BMOs were signaled rapidly and specifically to the location of dying motoneurons in the spinal cord. A large number of BMOs were observed around the avulsed motoneurons on the lesioned side of the spinal cord 1 day following the lesion. These BMOs were large, round, and intensely stained by both antibodies against ED1 and OX-42. The number of BMOs decreased by 3 days and disappeared by 5 days after injury. At the same time, reactive microglia appeared in the lesioned area and rapidly reached the peak level by the 5th day following avulsion. These reactive microglia were medium in size with retracted cellular processes and were also intensely stained by both ED1 and OX-42 antibodies. The number and staining intensity of reactive microglia declined sharply by day 7 after the lesion. In contrast, after distal axotomy only microglia but not BMOs were observed in the lesioned area. These microglial cells were small in size with long and fine-branched processes. They were ED1-negative but OX-42-positive.


Asunto(s)
Lesión Axonal Difusa/complicaciones , Neuronas Motoras/patología , Mielitis/etiología , Mielitis/patología , Radiculopatía/complicaciones , Médula Espinal/patología , Animales , Animales Recién Nacidos , Encéfalo/patología , Inmunohistoquímica , Macrófagos/patología , Microglía/patología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA