Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Adv Sci (Weinh) ; : e2401061, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569519

RESUMEN

The heterogeneity of macrophages influences the response to immune checkpoint inhibitor (ICI) therapy. However, few studies explore the impact of APOE+ macrophages on ICI therapy using single-cell RNA sequencing (scRNA-seq) and machine learning methods. The scRNA-seq and bulk RNA-seq data are Integrated to construct an M.Sig model for predicting ICI response based on the distinct molecular signatures of macrophage and machine learning algorithms. Comprehensive single-cell analysis as well as in vivo and in vitro experiments are applied to explore the potential mechanisms of the APOE+ macrophage in affecting ICI response. The M.Sig model shows clear advantages in predicting the efficacy and prognosis of ICI therapy in pan-cancer patients. The proportion of APOE+ macrophages is higher in ICI non-responders of triple-negative breast cancer compared with responders, and the interaction and longer distance between APOE+ macrophages and CD8+ exhausted T (Tex) cells affecting ICI response is confirmed by multiplex immunohistochemistry. In a 4T1 tumor-bearing mice model, the APOE inhibitor combined with ICI treatment shows the best efficacy. The M.Sig model using real-world immunotherapy data accurately predicts the ICI response of pan-cancer, which may be associated with the interaction between APOE+ macrophages and CD8+ Tex cells.

2.
Cell Death Dis ; 15(4): 286, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653992

RESUMEN

The progression of human degenerative and hypoxic/ischemic diseases is accompanied by widespread cell death. One death process linking iron-catalyzed reactive species with lipid peroxidation is ferroptosis, which shows hallmarks of both programmed and necrotic death in vitro. While evidence of ferroptosis in neurodegenerative disease is indicated by iron accumulation and involvement of lipids, a stable marker for ferroptosis has not been identified. Its prevalence is thus undetermined in human pathophysiology, impeding recognition of disease areas and clinical investigations with candidate drugs. Here, we identified ferroptosis marker antigens by analyzing surface protein dynamics and discovered a single protein, Fatty Acid-Binding Protein 5 (FABP5), which was stabilized at the cell surface and specifically elevated in ferroptotic cell death. Ectopic expression and lipidomics assays demonstrated that FABP5 drives redistribution of redox-sensitive lipids and ferroptosis sensitivity in a positive-feedback loop, indicating a role as a functional biomarker. Notably, immunodetection of FABP5 in mouse stroke penumbra and in hypoxic postmortem patients was distinctly associated with hypoxically damaged neurons. Retrospective cell death characterized here by the novel ferroptosis biomarker FABP5 thus provides first evidence for a long-hypothesized intrinsic ferroptosis in hypoxia and inaugurates a means for pathological detection of ferroptosis in tissue.


Asunto(s)
Biomarcadores , Proteínas de Unión a Ácidos Grasos , Ferroptosis , Proteínas de Neoplasias , Proteínas de Unión a Ácidos Grasos/metabolismo , Animales , Humanos , Biomarcadores/metabolismo , Ratones , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/patología , Ratones Endogámicos C57BL , Peroxidación de Lípido , Masculino
3.
Acc Chem Res ; 57(11): 1577-1594, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38623919

RESUMEN

ConspectusCarbohydrates are called the third chain of life. Carbohydrates participate in many important biochemical functions in living species, and the biological information carried by them is several orders of magnitude larger than that of nucleic acids and proteins. However, due to the intrinsic complexity and heterogeneity of carbohydrate structures, furnishing pure and structurally well-defined glycans for functional studies is a formidable task, especially for homogeneous large-size glycans. To address this issue, we have developed a donor preactivation-based one-pot glycosylation strategy enabling multiple sequential glycosylations in a single reaction vessel.The donor preactivation-based one-pot glycosylation refers to the strategy in which the glycosyl donor is activated in the absence of a glycosyl acceptor to generate a reactive intermediate. Subsequently, the glycosyl acceptor with the same anomeric leaving group is added, leading to a glycosyl coupling reaction, which is then iterated to rapidly achieve the desired glycan in the same reactor. The advantages of this strategy include the following: (1) unique chemoselectivity is obtained after preactivation; (2) it is independent of the reactivity of glycosyl donors; (3) multiple-step glycosylations are enabled without the need for intermediate purification; (4) only stoichiometric building blocks are required without complex protecting group manipulations. Using this protocol, a range of glycans including tumor-associated carbohydrate antigens, various glycosaminoglycans, complex N-glycans, and diverse bacterial glycans have been synthesized manually. Gratifyingly, the synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units has been achieved, which created a precedent in the field of polysaccharide synthesis. Recently, the synthesis of a highly branched arabinogalactan from traditional Chinese medicine featuring 140 monosaccharide units has been also accomplished to evaluate its anti-pancreatic-cancer activity. In the spirit of green and sustainable chemistry, this strategy can also be applied to light-driven glycosylation reactions, where either UV or visible light can be used for the activation of glycosyl donors.Automated synthesis is an advanced approach to the construction of complex glycans. Based on the two preactivation modes (general promoter activation mode and light-induced activation mode), a universal and highly efficient automated solution-phase synthesizer was further developed to drive glycan assembly from manual to automated synthesis. Using this synthesizer, a library of oligosaccharides covering various glycoforms and glycosidic linkages was assembled rapidly, either in a general promoter-activation mode or in a light-induced-activation mode. The automated synthesis of a fully protected fondaparinux pentasaccharide was realized on a gram scale. Furthermore, the automated synthesis of large-size polysaccharides was performed, allowing the assembly of arabinans up to an astonishing 1080-mer using the automated multiplicative synthesis strategy, taking glycan synthesis to a new height far beyond the synthesis of nucleic acids (up to 200-mer) and proteins (up to 472-mer).


Asunto(s)
Polisacáridos , Polisacáridos/química , Polisacáridos/síntesis química , Glicosilación , Automatización
4.
Cell Rep Med ; 5(2): 101399, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38307032

RESUMEN

Colorectal cancer (CRC) is a common malignancy involving multiple cellular components. The CRC tumor microenvironment (TME) has been characterized well at single-cell resolution. However, a spatial interaction map of the CRC TME is still elusive. Here, we integrate multiomics analyses and establish a spatial interaction map to improve the prognosis, prediction, and therapeutic development for CRC. We construct a CRC immune module (CCIM) that comprises FOLR2+ macrophages, exhausted CD8+ T cells, tolerant CD8+ T cells, exhausted CD4+ T cells, and regulatory T cells. Multiplex immunohistochemistry is performed to depict the CCIM. Based on this, we utilize advanced deep learning technology to establish a spatial interaction map and predict chemotherapy response. CCIM-Net is constructed, which demonstrates good predictive performance for chemotherapy response in both the training and testing cohorts. Lastly, targeting FOLR2+ macrophage therapeutics is used to disrupt the immunosuppressive CCIM and enhance the chemotherapy response in vivo.


Asunto(s)
Neoplasias Colorrectales , Aprendizaje Profundo , Receptor 2 de Folato , Humanos , Linfocitos T CD8-positivos , Multiómica , Macrófagos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Microambiente Tumoral/genética
5.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293095

RESUMEN

Radiotherapy (RT), is a fundamental treatment for malignant tumors and is used in over half of cancer patients. As radiation can promote anti-tumor immune effects, a promising therapeutic strategy is to combine radiation with immune checkpoint inhibitors (ICIs). However, the genetic determinants that impact therapeutic response in the context of combination therapy with radiation and ICI have not been systematically investigated. To unbiasedly identify the tumor intrinsic genetic factors governing such responses, we perform a set of genome-scale CRISPR screens in melanoma cells for cancer survival in response to low-dose genotoxic radiation treatment, in the context of CD8 T cell co-culture and with anti-PD1 checkpoint blockade antibody. Two actin capping proteins, Capza3 and Capg, emerge as top hits that upon inactivation promote the survival of melanoma cells in such settings. Capza3 and Capg knockouts (KOs) in mouse and human cancer cells display persistent DNA damage due to impaired homology directed repair (HDR); along with increased radiation, chemotherapy, and DNA repair inhibitor sensitivity. However, when cancer cells with these genes inactivated were exposed to sublethal radiation, inactivation of such actin capping protein promotes activation of the STING pathway, induction of inhibitory CEACAM1 ligand expression and resistance to CD8 T cell killing. Patient cancer genomics analysis reveals an increased mutational burden in patients with inactivating mutations in CAPG and/or CAPZA3, at levels comparable to other HDR associated genes. There is also a positive correlation between CAPG expression and activation of immune related pathways and CD8 T cell tumor infiltration. Our results unveil the critical roles of actin binding proteins for efficient HDR within cancer cells and demonstrate a previously unrecognized regulatory mechanism of therapeutic response to radiation and immunotherapy.

6.
ACS Appl Mater Interfaces ; 15(34): 40201-40212, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37589474

RESUMEN

Abnormal glycosylation is a hallmark of tumor development, and tumor-associated carbohydrate antigens are potential immune targets for tumor therapy. Tumor-associated extracellular microvesicles are subcellular vesicles released from cell membranes that have immunogenicity similar to that of precursor cells. However, unmodified tumor-derived microvesicles have weaknesses, such as low immunogenicity, poor biostability, and short half-life in vivo. For the first time, we herein generated extracellular microvesicles containing modified tumor-associated carbohydrate antigens by constructing a cell line with highly expressed antigen-processing enzymes utilizing fluorine-modified monosaccharide substrates via a metabolic oligosaccharide engineering strategy. The microvesicles were applied to tumor immunity, achieving enhanced immunoprophylaxis and immunotherapy effects. Furthermore, the mechanisms of antitumor immunity were explored. Our findings may provide new insights into the adhibition of suitably modified extracellular microvesicles and the development of more effective carbohydrate-based anticancer vaccines.


Asunto(s)
Flúor , Neoplasias , Humanos , Presentación de Antígeno , Neoplasias/terapia , Línea Celular , Membrana Celular
7.
Cell Rep Med ; 4(4): 100987, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36990096

RESUMEN

Immunometabolism in the tumor microenvironment (TME) and its influence on the immunotherapy response remain uncertain in colorectal cancer (CRC). We perform immunometabolism subtyping (IMS) on CRC patients in the training and validation cohorts. Three IMS subtypes of CRC, namely, C1, C2, and C3, are identified with distinct immune phenotypes and metabolic properties. The C3 subtype exhibits the poorest prognosis in both the training cohort and the in-house validation cohort. The single-cell transcriptome reveals that a S100A9+ macrophage population contributes to the immunosuppressive TME in C3. The dysfunctional immunotherapy response in the C3 subtype can be reversed by combination treatment with PD-1 blockade and an S100A9 inhibitor tasquinimod. Taken together, we develop an IMS system and identify an immune tolerant C3 subtype that exhibits the poorest prognosis. A multiomics-guided combination strategy by PD-1 blockade and tasquinimod improves responses to immunotherapy by depleting S100A9+ macrophages in vivo.


Asunto(s)
Neoplasias Colorrectales , Multiómica , Humanos , Receptor de Muerte Celular Programada 1 , Inmunoterapia , Macrófagos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Microambiente Tumoral
8.
Cell Calcium ; 110: 102703, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773492

RESUMEN

Ferroptosis is an iron-dependent form of cell death triggered by dysregulation of biochemical processes that culminate in lethal lipid peroxidation. Lipid metabolism is fundamental for determining ferroptotic fate, however, the mechanisms that alter lipid components to shape ferroptosis susceptibility remains elusive. A recent article by Lin and colleagues in Nature Communications systematically analyzed phospholipid transporters (phospholipid scramblases, flippases, and floppases), and identified that the lipid flippase solute carrier family 47 member 1 (SLC47A1) functions as a regulator of lipid remodeling and promotes ferroptosis resistance. SLC47A1 is transactivated by peroxisome proliferator activated receptor alpha (PPARA). Upon ferroptosis induction, SLC47A1 upregulation inhibits DHA/DPA polyunsaturated fatty acid containing glycerophospholipids (PUFA-PLs) accumulation to block ferroptosis. Depletion of either PPARA or SLC47A1 sensitized cells to ferroptosis by favoring ACSL4-SOAT1-mediated production of polyunsaturated fatty acid containing (PUFA) cholesterol esters. Ferroptosis has been widely linked to degenerative processes and tumor suppression. These findings indicate that lipid transporters may provide yet another means by which PUFA-containing membrane lipids convey ferroptosis sensitivity.


Asunto(s)
Ferroptosis , Ácidos Grasos Insaturados , Muerte Celular , Fosfolípidos/metabolismo , Metabolismo de los Lípidos
9.
ACS Appl Mater Interfaces ; 15(6): 7713-7724, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36728365

RESUMEN

Despite hypersialylation of cancer cells together with a significant upregulation of sialyltransferase (ST) activity contributes to the metastatic cascade at multiple levels, there are few dedicated tools to interfere with their expression. Although transition state-based ST inhibitors are well-established, they are not membrane permeable. To tackle this problem, herein, we design and construct long-circulating, self-assembled core-shell nanoscale coordination polymer (NCP) nanoparticles carrying a transition state-based ST inhibitor, which make the inhibitor transmembrane and potently strip diverse sialoglycans from various cancer cells. In the experimental lung metastasis and metastasis prevention models, the nanoparticle device (NCP/STI) significantly inhibits metastases formation without systemic toxicity. This strategy enables ST inhibitors to be applied to cells and animals by providing them with a well-designed nanodelivery system. Our work opens a new avenue to the development of transition state-based ST inhibitors and demonstrates that NCP/STI holds great promise in achieving metastases inhibition for multiple cancers.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Polímeros , Sialiltransferasas
10.
Nat Biotechnol ; 41(9): 1239-1255, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36702900

RESUMEN

The efficiency of targeted knock-in for cell therapeutic applications is generally low, and the scale is limited. In this study, we developed CLASH, a system that enables high-efficiency, high-throughput knock-in engineering. In CLASH, Cas12a/Cpf1 mRNA combined with pooled adeno-associated viruses mediate simultaneous gene editing and precise transgene knock-in using massively parallel homology-directed repair, thereby producing a pool of stably integrated mutant variants each with targeted gene editing. We applied this technology in primary human T cells and performed time-coursed CLASH experiments in blood cancer and solid tumor models using CD3, CD8 and CD4 T cells, enabling pooled generation and unbiased selection of favorable CAR-T variants. Emerging from CLASH experiments, a unique CRISPR RNA (crRNA) generates an exon3 skip mutant of PRDM1 in CAR-Ts, which leads to increased proliferation, stem-like properties, central memory and longevity in these cells, resulting in higher efficacy in vivo across multiple cancer models, including a solid tumor model. The versatility of CLASH makes it broadly applicable to diverse cellular and therapeutic engineering applications.


Asunto(s)
Proteínas Bacterianas , Edición Génica , Humanos , Proteínas Bacterianas/genética , Edición Génica/métodos , Linfocitos T CD4-Positivos/metabolismo , ARN , Sistemas CRISPR-Cas/genética
11.
Glycobiology ; 32(2): 101-109, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-34939084

RESUMEN

O-GlcNAcylation is a post-translational modification that links metabolism with signal transduction. High O-GlcNAcylation appears to be a general characteristic of cancer cells. It promotes the invasion, metastasis, proliferation and survival of tumor cells, and alters many metabolic pathways. Glycogen metabolism increases in a wide variety of tumors, suggesting that it is an important aspect of cancer pathophysiology. Herein we focused on the O-GlcNAcylation of liver glycogen phosphorylase (PYGL)-an important catabolism enzyme in the glycogen metabolism pathway. PYGL expressed in both HEK 293T and HCT116 was modified by O-GlcNAc. And both PYGL O-GlcNAcylation and phosphorylation of Ser15 (pSer15) were decreased under glucose and insulin, whereas increased under glucagon and Na2S2O4 (hypoxia) conditions. Then, we identified the major O-GlcNAcylation site to be Ser430, and demonstrated that pSer15 and Ser430 O-GlcNAcylation were mutually reinforced. Lastly, we found that Ser430 O-GlcNAcylation was fundamental for PYGL activity. Thus, O-GlcNAcylation of PYGL positively regulated pSer15 and therefore its enzymatic activity. Our results provided another molecular insight into the intricate post-translational regulation network of PYGL.


Asunto(s)
N-Acetilglucosaminiltransferasas , Neoplasias , Acetilglucosamina/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Humanos , N-Acetilglucosaminiltransferasas/genética , Fosforilación , Procesamiento Proteico-Postraduccional
12.
Mol Cancer Res ; 20(4): 650-660, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907035

RESUMEN

Lymphocyte infiltration is an important feature of cancer. There is a complex network of chemokines that influence the degree and phenotype of lymphocyte infiltration, as well as the growth, survival, migration, and angiogenesis of tumor cells. High heterogeneity metastasis is a major obstacle to the treatment of breast cancer. Herein, we showed that O-GlcNAcylation of B lymphocyte-induced maturation protein-1 (Blimp-1) in lymphocytes inhibited the migration and invasion of breast cancer cells. It was found that Blimp-1 O-GlcNAcylation at Ser448 and Ser472 in lymphocytes promoted its nuclear localization, and blocked the bindings to three regions upstream of the ccl3l1 promoter to inhibit its expression. Decreased expression of CCL3L1 in lymphocytes not only decreased CCR5 expression in breast cancer cells, but also inhibited the membrane localization and activation of CCR5, thus blocking the migration and invasion of breast cancer cells in vitro. Therefore, O-GlcNAcylation of Blimp-1 in lymphocytes may serve as a new target for the treatment of metastatic breast cancer. IMPLICATIONS: This study reveals a new mechanism by which the lymphatic system promotes breast cancer cell metastasis.


Asunto(s)
Neoplasias de la Mama , Linfocitos , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Neoplasias de la Mama/patología , Femenino , Humanos , Linfocitos/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Regiones Promotoras Genéticas
13.
Cell Death Differ ; 29(3): 670-686, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34663908

RESUMEN

Ferroptosis is an iron-dependent form of cell death driven by biochemical processes that promote oxidation within the lipid compartment. Calcium (Ca2+) is a signaling molecule in diverse cellular processes such as migration, neurotransmission, and cell death. Here, we uncover a crucial link between ferroptosis and Ca2+ through the identification of the novel tetraspanin MS4A15. MS4A15 localizes to the endoplasmic reticulum, where it blocks ferroptosis by depleting luminal Ca2+ stores and reprogramming membrane phospholipids to ferroptosis-resistant species. Specifically, prolonged Ca2+ depletion inhibits lipid elongation and desaturation, driving lipid droplet dispersion and formation of shorter, more saturated ether lipids that protect phospholipids from ferroptotic reactive species. We further demonstrate that increasing luminal Ca2+ levels can preferentially sensitize refractory cancer cell lines. In summary, MS4A15 regulation of anti-ferroptotic lipid reservoirs provides a key resistance mechanism that is distinct from antioxidant and lipid detoxification pathways. Manipulating Ca2+ homeostasis offers a compelling strategy to balance cellular lipids and cell survival in ferroptosis-associated diseases.


Asunto(s)
Fenómenos Bioquímicos , Ferroptosis , Calcio , Peroxidación de Lípido , Oxidación-Reducción , Fosfolípidos
14.
RSC Med Chem ; 12(7): 1239-1243, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34355188

RESUMEN

Globo H is a tumor-associated carbohydrate antigen (TACA), which serves as a valuable target for antitumor vaccine or cancer immunotherapies. However, most TACAs are T-cell-independent, and they cannot induce powerful immune response due to their poor immunogenicity. To address this problem, herein, several Globo H analogues with modification on the N-acyl group were prepared through a preactivation-based glycosylation strategy from the non-reducing end to the reducing end. These modified Globo H derivatives were then conjugated with carrier protein CRM197 to form glycoconjugates as anticancer vaccine candidates, which were used in combination with adjuvant glycolipid C34 for immunological studies. The immunological effects of these synthetic vaccine candidates were evaluated on Balb/c mice. The results showed that the fluorine-modified N-acyl Globo H conjugates can induce higher titers of IgG antibodies that can recognize the naturally occurring Globo H antigen on the surface of cancer cells and can eliminate cancer cells in the presence of a complement, indicating the potential of these synthetic glycoconjugates as anticancer vaccine candidates.

15.
Stem Cells Int ; 2020: 4636397, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32148518

RESUMEN

BACKGROUND: The aim of this study was to investigate the effects of human umbilical cord mesenchymal stem cell activated by curcumin (hUC-MSCs-CUR) on Parkinson's disease (PD). hUC-MSCs can differentiate into many types of adult tissue cells including dopaminergic (DA) neurons. CUR could protect DA neurons from apoptosis induced by 6-hydroxydopamine (6-OHDA). Therefore, we used the hUC-MSCs activated by CUR for the treatment of PD in an animal model. METHODS: The hUC-MSCs-CUR was transplanted into the MPTP-induced PD mouse models via the tail vein. We found that hUC-MSCs-CUR significantly improved the motor ability, increased the tyrosine hydroxylase (TH), dopamine (DA), and Bcl-2 levels, and reduced nitric oxide synthase, Bax, and cleaved caspase 3 expression in PD mice. The supernatant of hUC-MSCs-CUR (CM-CUR) was used to stimulate the SH-SY5Y cellular model of PD; cell proliferation, differentiation, TH, and neuronal-specific marker microtubular-associated protein 2 (MAP2) expressions were examined. RESULTS: Our data showed that CM-CUR significantly promoted cell proliferation and gradually increased TH and MAP2 expression in SH-SY5Y PD cells. The beneficial effects could be associated with significant increase of rough endoplasmic reticulum in the hUC-MSCs-CUR, which secretes many cytokines and growth factors beneficial for PD treatment. CONCLUSIONS: Transplantation of hUC-MSCs-CUR could show promise for improving the motor recovery of PD.

16.
Front Oncol ; 9: 903, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620363

RESUMEN

Background: Invasive ductal carcinoma (IDC) is a clinically and molecularly distinct disease. Tumor microenvironment (TME) immune phenotypes play crucial roles in predicting clinical outcomes and therapeutic efficacy. Method: In this study, we depict the immune landscape of IDC by using transcriptome profiling and clinical characteristics retrieved from The Cancer Genome Atlas (TCGA) data portal. Immune cell infiltration was evaluated via single-sample gene set enrichment (ssGSEA) analysis and systematically correlated with genomic characteristics and clinicopathological features of IDC patients. Furthermore, an immune signature was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm. A random forest algorithm was applied to identify the most important somatic gene mutations associated with the constructed immune signature. A nomogram that integrated clinicopathological features with the immune signature to predict survival probability was constructed by multivariate Cox regression. Results: The IDC were clustered into low immune infiltration, intermediate immune infiltration, and high immune infiltration by the immune landscape. The high infiltration group had a favorable survival probability compared with that of the low infiltration group. The low-risk score subtype identified by the immune signature was characterized by T cell-mediated immune activation. Additionally, activation of the interferon-α response, interferon-γ response, and TNF-α signaling via the NFκB pathway was observed in the low-risk score subtype, which indicated T cell activation and may be responsible for significantly favorable outcomes in IDC patients. A random forest algorithm identified the most important somatic gene mutations associated with the constructed immune signature. Furthermore, a nomogram that integrated clinicopathological features with the immune signature to predict survival probability was constructed, revealing that the immune signature was an independent prognostic biomarker. Finally, the relationship of VEGFA, PD1, PDL-1, and CTLA-4 expression with the immune infiltration landscape and the immune signature was analyzed to interpret the responses of IDC patients to immunotherapy. Conclusion: Taken together, we performed a comprehensive evaluation of the immune landscape of IDC and constructed an immune signature related to the immune landscape. This analysis of TME immune infiltration landscape has shed light on how IDC respond to immunotherapy and may guide the development of novel drug combination strategies.

17.
BMC Pulm Med ; 19(1): 125, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291926

RESUMEN

BACKGROUND: Medical thoracoscopy is considered an overall safe procedure, whereas numbers of studies focus on complications of diagnostic thoracoscopy and talc poudrage pleurodesis. We conduct this study to evaluate the safety of medical thoracoscopy in the management of pleural diseases and to compare complications in different therapeutic thoracoscopic procedures. METHODS: A retrospective study was performed in 1926 patients, 662 of whom underwent medical thoracoscopy for diagnosis and 1264 of whom for therapeutic interventions of pleural diseases. Data on complications were obtained from the patients, notes on computer system, laboratory and radiographic findings. Chi-square test was performed to compare categorical variables and Fisher's exact test was used for small samples. RESULTS: The mean age was 51 ± 8.4 (range 21-86) years and 1117 (58%) were males. Diagnostic procedure was taken in 662 (34.4%) patients, whereas therapeutic procedure was taken in 1264 (65.6%) patients. Malignant histology was reported in 860 (44.6%) and 986 (51.2%) revealed benign pleural diseases. Eighty patients (4.2%) were not definitely diagnosed and they were considered as unidentified pleural effusion. One patient died during the creation of artificial pneumothorax, and the causes of death were supposed as air embolism or an inhibition of phrenic motoneurons and circulatory system. Complication of lung laceration was found in six patients (0.3%) and reexpansion pulmonary edema was observed in two patients (0.1%). Higher incidence of prolonged air leak was observed in bulla electrocoagulation group, in comparison with pleurodesis group. Moreover, pain and fever were the most frequently complications in pleurodesis group and cutaneous infection in entry site was the most frequently reported complication in pleural decortication of empyema group. CONCLUSIONS: Medical thoracoscopy is generally a safe and effective method, not only in the diagnosis of undiagnosed pleural effusions, but also in the management of pleural diseases. Mastering medical thoracoscopy well, improving patient management after the procedure and attempts to reduce the occurrence of post-procedural complications are the targets that physicians are supposed to achieve in the future.


Asunto(s)
Derrame Pleural Maligno/diagnóstico , Derrame Pleural/diagnóstico , Derrame Pleural/terapia , Pleurodesia , Toracoscopía , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Distribución de Chi-Cuadrado , Exudados y Transudados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Seguridad del Paciente , Pleura/patología , Pleurodesia/efectos adversos , Recurrencia , Estudios Retrospectivos , Talco/administración & dosificación , Toracoscopía/efectos adversos , Tuberculosis/complicaciones , Tuberculosis/diagnóstico , Adulto Joven
18.
Glycoconj J ; 36(5): 399-408, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31267246

RESUMEN

Even though a vaccine that targets tumor-associated carbohydrate antigens on epithelial carcinoma cells presents an attractive therapeutic approach, relatively poor immunogenicity limits its development. In this study, we investigated the immunological activity of a fluoro-substituted Sialyl-Tn (F-STn) analogue coupled to the non-toxic cross-reactive material of diphtheria toxin197 (CRM197). Our results indicate that F-STn-CRM197 promotes a greater immunogenicity than non-fluorinated STn-CRM197. In the presence or absence of adjuvant, F-STn-CRM197 remarkably enhances both cellular and humoral immunity against STn by increasing antigen-specific lymphocyte proliferation and inducing a mixed Th1/Th2 response leading to production of IFN-γ and IL-4 cytokines, as well as STn-specific antibodies. Furthermore, antisera produced from F-STn-CRM197 immunization significantly recognizes STn-positive tumor cells and increases cancer cell lysis induced by antibody-dependent cell-mediated cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) pathways. Our data suggest that this F-STn vaccine may be useful for cancer immunotherapy and possibly for prophylactic prevention of cancer.


Asunto(s)
Anticuerpos Antineoplásicos/farmacología , Antígenos de Carbohidratos Asociados a Tumores/química , Proteínas Bacterianas/farmacología , Vacunas contra el Cáncer/farmacología , Neoplasias del Colon/terapia , Glicoconjugados/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Antineoplásicos/aislamiento & purificación , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Vacunas contra el Cáncer/síntesis química , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Femenino , Expresión Génica , Glicoconjugados/síntesis química , Glicoconjugados/inmunología , Halogenación , Humanos , Sueros Inmunes/química , Sueros Inmunes/farmacología , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Inmunización , Inmunogenicidad Vacunal , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-4/genética , Interleucina-4/inmunología , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Bazo/efectos de los fármacos , Bazo/inmunología , Balance Th1 - Th2
19.
Front Genet ; 10: 349, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105737

RESUMEN

Background: Lung adenocarcinoma (LUAD) is the leading cause of cancer-related mortality worldwide. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. The DNA methylation patterns of LUAD display a great potential as a specific biomarker that will complement invasive biopsy, thus improving early detection. Method: In this study, based on the whole-genome methylation datasets from The Cancer Genome Atlas (TCGA) and several machine learning methods, we evaluated the possibility of DNA methylation signatures for identifying lymph node metastasis of LUAD, differentiating between tumor tissue and normal tissue, and predicting the overall survival (OS) of LUAD patients. Using the regularized logistic regression, we built a classifier based on the 3616 CpG sites to identify the lymph node metastasis of LUAD. Furthermore, a classifier based on 14 CpG sites was established to differentiate between tumor and normal tissues. Using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression, we built a 16-CpG-based model to predict the OS of LUAD patients. Results: With the aid of 3616-CpG-based classifier, we were able to identify the lymph node metastatic status of patients directly by the methylation signature from the primary tumor tissues. The 14-CpG-based classifier could differentiate between tumor and normal tissues. The area under the receiver operating characteristic (ROC) curve (AUC) for both classifiers achieved values close to 1, demonstrating the robust classifier effect. The 16-CpG-based model showed independent prognostic value in LUAD patients. Interpretation: These findings will not only facilitate future treatment decisions based on the DNA methylation signatures but also enable additional investigations into the utilization of LUAD DNA methylation pattern by different machine learning methods.

20.
Cancer Cell Int ; 19: 100, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31015800

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) patients experiencing lymph node metastasis (LNM) always exhibit poor clinical outcomes. A biomarker or gene signature that could predict survival in these patients would have a substantial clinical impact, allowing for earlier detection of mortality risk and for individualized therapy. METHODS: With the aim to identify a novel mRNA signature associated with overall survival, we analysed LUAD patients with LNM extracted from The Cancer Genome Atlas (TCGA). LASSO Cox regression was applied to build the prediction model. An external cohort was applied to validate the prediction model. RESULTS: We identified a 4-gene signature that could effectively stratify a high-risk subset of these patients, and time-dependent receiver operating characteristic (tROC) analysis indicated that the signature had a powerful predictive ability. Gene Set Enrichment Analysis (GSEA) showed that the high-risk subset was mainly associated with important cancer-related hallmarks. Moreover, a predictive nomogram was established based on the signature integrated with clinicopathological features. Lastly, the signature was validated by an external cohort from Gene Expression Omnibus (GEO). CONCLUSION: In summary, we developed a robust mRNA signature as an independent factor to effectively classify LUAD patients with LNM into low- and high-risk groups, which might provide a basis for personalized treatments for these patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA