Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
1.
Adv Sci (Weinh) ; : e2400066, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973154

RESUMEN

The mechanism and function of the expression of Schwann characteristics by nevus cells in the mature zone of the dermis are unknown. Early growth response 3 (EGR3) induces Schwann cell-like differentiation of melanoma cells by simulating the process of nevus maturation, which leads to a strong phenotypic transformation of the cells, including the formation of long protrusions and a decrease in cell motility, proliferation, and melanin production. Meanwhile, EGR3 regulates the levels of myelin protein zero (MPZ) and collagen type I alpha 1 chain (COL1A1) through SRY-box transcription factor 10 (SOX10)-dependent and independent mechanisms, by binding to non-strictly conserved motifs, respectively. Schwann cell-like differentiation demonstrates significant benefits in both in vivo and clinical studies. Finally, a CD86-P2A-EGR3 recombinant mRNA vaccine is developed which leads to tumor control through forced cell differentiation and enhanced immune infiltration. Together, these data support further development of the recombinant mRNA as a treatment for cancer.

2.
Nitric Oxide ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971520

RESUMEN

Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors that release H2S are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.

3.
Cancer Gene Ther ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839892

RESUMEN

Post-transcriptional RNA modification is an emerging epigenetic control mechanism in cells that is important in many different cellular and organismal processes. N6-methyladenosine (m6A) is one of the most prevalent, prolific, and ubiquitous internal transcriptional alterations in eukaryotic mRNAs, making it an important topic in the field of Epigenetics. m6A methylation acts as a dynamical regulatory process that regulates the activity of genes and participates in multiple physiological processes, by supporting multiple aspects of essential mRNA metabolic processes, including pre-mRNA splicing, nuclear export, translation, miRNA synthesis, and stability. Extensive research has linked aberrations in m6A modification and m6A-associated proteins to a wide range of human diseases. However, the impact of m6A on mRNA metabolism and its pathological connection between m6A and other non-communicable diseases, including cardiovascular disease, neurodegenerative disorders, liver diseases, and cancer remains in fragmentation. Here, we review the existing understanding of the overall role of mechanisms by which m6A exerts its activities and address new discoveries that highlight m6A's diverse involvement in gene expression regulation. We discuss m6A deposition on mRNA and its consequences on degradation, translation, and transcription, as well as m6A methylation of non-coding chromosomal-associated RNA species. This study could give new information about the molecular process, early detection, tailored treatment, and predictive evaluation of human non-communicable diseases like cancer. We also explore more about new data that suggests targeting m6A regulators in diseases may have therapeutic advantages.

4.
Cancer Lett ; 595: 217025, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38844063

RESUMEN

Despite the confirmed role of LKB1 in suppressing lung cancer progression, its precise effect on cellular senescence is unknown. The aim of this research was to clarify the role and mechanism of LKB1 in restraining telomerase activity in lung adenocarcinoma. The results showed that LKB1 induced cellular senescence and apoptosis either in vitro or in vivo. Overexpression of LKB1 in LKB1-deficient A549 cells led to the inhibition of telomerase activity and the induction of telomere dysfunction by regulating telomerase reverse transcriptase (TERT) expression in terms of transcription. As a transcription factor, Sp1 mediated TERT inhibition after LKB1 overexpression. LKB1 induced lactate production and inhibited histone H4 (Lys8) and H4 (Lys16) lactylation, which further altered Sp1-related transcriptional activity. The telomerase inhibitor BIBR1532 was beneficial for achieving the optimum curative effect of traditional chemotherapeutic drugs accompanied by the glycolysis inhibitor 2DG. These data reveal a new mechanism by which LKB1 regulates telomerase activity through lactylation-dependent transcriptional inhibition, and therefore, provide new insights into the effects of LKB1-mediated senescence in lung adenocarcinoma. Our research has opened up new possibilities for the creation of new cancer treatments.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Adenocarcinoma del Pulmón , Senescencia Celular , Histonas , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinasas , Factor de Transcripción Sp1 , Telomerasa , Animales , Humanos , Ratones , Células A549 , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Senescencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética , Telomerasa/metabolismo , Telomerasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Adv Res ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38876192

RESUMEN

BACKGROUND: Nuclear pore complexes (NPCs) are the architectures entrenched in nuclear envelop of a cell that regulate the nucleo-cytoplasmic transportation of materials, such as proteins and RNAs for proper functioning of a cell. The appropriate localization of proteins and RNAs within the cell is essential for its normal functionality. For such a complex transportation of materials across the NPC, around 60 proteins are involved comprising nucleoporins, karyopherins and RAN system proteins that play a vital role in NPC's structure formation, cargo translocation across NPC, and cargoes' rapid directed transportation respectively. In various cancers, the structure and function of NPC is often exaggerated, following altered expressions of its nucleoporins and karyopherins, affecting other proteins of associated signaling pathways. Some inhibitors of karyopherins at present, have potential to regulate the altered level/expression of these karyopherin molecules. AIM OF REVIEW: This review summarizes the data from 1990 to 2023, mainly focusing on recent studies that illustrate the structure and function of NPC, the relationship and mechanisms of nucleoporins and karyopherins with colorectal cancer, as well as therapeutic values, in order to understand the pathology and underlying basis of colorectal cancer associated with NPC. This is the first review to our knowledge elucidating the detailed updated studies targeting colorectal cancer at NPC. The review also aims to target certain karyopherins, Nups and their possible inhibitors and activators molecules as a therapeutic strategy. KEY SCIENTIFIC CONCEPTS OF REVIEW: NPC structure provides understanding, how nucleoporins and karyopherins as key molecules are responsible for appropriate nucleocytoplasmic transportation. Many studies provide evidences, describing the role of disrupted nucleoporins and karyopherins not only in CRC but also in other non-hematological and hematological malignancies. At present, some inhibitors of karyopherins have therapeutic potential for CRC, however development of more potent inhibitors may provide more effective therapeutic strategies for CRC in near future.

6.
Cell Signal ; 120: 111236, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810860

RESUMEN

Hydrogen sulfide (H2S) is one of the three most crucial gaseous messengers in the body. The discovery of H2S donors, coupled with its endogenous synthesis capability, has sparked hope for the treatment of hematologic malignancies. In the last decade, the investigation into the impact of H2S has expanded, particularly within the fields of cardiovascular function, inflammation, infection, and neuromodulation. Hematologic malignancies refer to a diverse group of cancers originating from abnormal proliferation and differentiation of blood-forming cells, including leukemia, lymphoma, and myeloma. In this review, we delve deeply into the complex interrelation between H2S and hematologic malignancies. In addition, we comprehensively elucidate the intricate molecular mechanisms by which both H2S and its donors intricately modulate the progression of tumor growth. Furthermore, we systematically examine their impact on pivotal aspects, encompassing the proliferation, invasion, and migration capacities of hematologic malignancies. Therefore, this review may contribute novel insights to our understanding of the prospective therapeutic significance of H2S and its donors within the realm of hematologic malignancies.


Asunto(s)
Neoplasias Hematológicas , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Humanos , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Animales , Proliferación Celular/efectos de los fármacos
7.
Mol Biotechnol ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38762838

RESUMEN

PEST-containing nuclear protein (PCNP), a short-lived small nuclear protein with 178 amino acids, is a nuclear protein containing two PEST sequences. PCNP is highly expressed in several malignant tumors such as cervical cancer, rectal cancer, and lung cancer. It is also associated with cell cycle regulation and the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Wnt signaling pathways during tumor growth. The present article discuss how PCNP regulates the PI3K/AKT/mTOR and Wnt signaling pathways and related proteins, and the ubiquitination of PCNP regulates tumor cell cycle as well as the progress of the application of PCNP in the pathophysiology and treatment of colon cancer, human ovarian cancer, thyroid cancer, lung adenocarcinoma and oral squamous cell carcinoma. The main relevant articles were retrieved from PubMed, with keywords such as PEST-containing nuclear protein (PCNP), cancer (tumor), and signaling pathways as inclusion/exclusion criteria. Relevant references has been included and cited in the manuscript.

8.
Biochem Biophys Res Commun ; 716: 150002, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38697011

RESUMEN

Type 2 diabetes mellitus (T2DM) significantly impairs the functionality and number of endothelial progenitor cells (EPCs) and resident endothelial cells, critical for vascular repair and regeneration, exacerbating the risk of vascular complications. GLP-1 receptor agonists, like dulaglutide, have emerged as promising therapeutic agents due to their multifaceted effects, including the enhancement of EPC activity and protection of endothelial cells. This study investigates dulaglutide's effects on peripheral blood levels of CD34+ and CD133+ cells in a mouse model of lower limb ischemia and its protective mechanisms against high-glucose-induced damage in endothelial cells. Results demonstrated that dulaglutide significantly improves blood flow, reduces tissue damage and inflammation in ischemic limbs, and enhances glycemic control. Furthermore, dulaglutide alleviated high-glucose-induced endothelial cell damage, evident from improved tube formation, reduced reactive oxygen species accumulation, and restored endothelial junction integrity. Mechanistically, dulaglutide mitigated mitochondrial fission in endothelial cells under high-glucose conditions, partly through maintaining SIRT1 expression, which is crucial for mitochondrial dynamics. This study reveals the potential of dulaglutide as a therapeutic option for vascular complications in T2DM patients, highlighting its role in improving endothelial function and mitochondrial integrity.


Asunto(s)
Diabetes Mellitus Experimental , Células Progenitoras Endoteliales , Péptidos Similares al Glucagón , Glucosa , Fragmentos Fc de Inmunoglobulinas , Dinámicas Mitocondriales , Proteínas Recombinantes de Fusión , Sirtuina 1 , Animales , Fragmentos Fc de Inmunoglobulinas/farmacología , Péptidos Similares al Glucagón/análogos & derivados , Péptidos Similares al Glucagón/farmacología , Péptidos Similares al Glucagón/uso terapéutico , Sirtuina 1/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Masculino , Ratones , Glucosa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Ratones Endogámicos C57BL , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Hipoglucemiantes/farmacología , Humanos , Isquemia/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/patología
9.
Cancer Lett ; 590: 216870, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38614386

RESUMEN

To seed lethal secondary lesions, circulating tumor cells (CTCs) must survive all rate-limiting factors during hematogenous dissemination, including fluid shear stress (FSS) that poses a grand challenge to their survival. We thus hypothesized that CTCs with the ability to survive FSS in vasculature might hold metastasis-initiating competence. This study reported that FSS of physiologic magnitude selected a small subpopulation of suspended tumor cells in vitro with the traits of metastasis-initiating cells, including stemness, migration/invasion potential, cellular plasticity, and biophysical properties. These shear-selected cells generated local and metastatic tumors at the primary and distal sites efficiently, implicating their metastasis competence. Mechanistically, FSS activated the mechanosensitive protein CXCR4 and the downstream PI3K/AKT signaling, which were essential in shear-mediated selection of metastasis-competent CTCs. In summary, these findings conclude that CTCs with metastasis-initiating competence survive FSS during hematogenous dissemination through CXCR4-PI3K/AKT signaling, which may provide new therapeutic targets for the early prevention of tumor metastasis.


Asunto(s)
Células Neoplásicas Circulantes , Transducción de Señal , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Estrés Mecánico
10.
J Pharm Anal ; 14(4): 100905, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665224

RESUMEN

Epigenomic imbalance drives abnormal transcriptional processes, promoting the onset and progression of cancer. Although defective gene regulation generally affects carcinogenesis and tumor suppression networks, tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes, which may have significant implications for the development and application of epigenetic therapy, cancer immunotherapy, and their combinations. Herein, we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes, DNA methylation, histone post-translational modification, and chromatin structure in tumor immunogenicity, and introduce these epigenetic research methods. We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immunotherapy through the complex interaction between cancer epigenetics and cancer immunology.

11.
Biomed Pharmacother ; 175: 116613, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657502

RESUMEN

Diabetic cardiomyopathy (DCM) contributes significantly to the heightened mortality rate observed among diabetic patients, with myocardial fibrosis (MF) being a pivotal element in the disease's progression. Hydrogen sulfide (H2S) has been shown to mitigate MF, but the specific underlying mechanisms have yet to be thoroughly understood. A connection has been established between the evolution of DCM and the incidence of cardiomyocyte pyroptosis. Our research offers insights into H2S protective impact and its probable mode of action against DCM, analyzed through the lens of MF. In this study, a diabetic rat model was developed using intraperitoneal injections of streptozotocin (STZ), and hyperglycemia-stimulated cardiomyocytes were employed to replicate the cellular environment of DCM. There was a marked decline in the expression of cystathionine γ-lyase (CSE), a catalyst for H2S synthesis, in both the STZ-induced diabetic rats and hyperglycemia-stimulated cardiomyocytes. Experimental results in vivo indicated that H2S ameliorates MF and enhances cardiac functionality in diabetic rats by mitigating cardiomyocyte pyroptosis. In vitro assessments highlighted the induction of cardiomyocyte pyroptosis and the subsequent decline in cell viability under hyperglycemic conditions. However, the administration of sodium hydrosulfide (NaHS) curtailed cardiomyocyte pyroptosis and augmented cell viability. In contrast, propargylglycine (PAG), a CSE inhibitor, reversed the effects rendered by NaHS administration. Additional exploration indicated that the mitigating effect of H2S on cardiomyocyte pyroptosis is modulated through the ROS/NLRP3 pathway. In essence, our findings corroborate the potential of H2S in alleviating MF in diabetic subjects. This therapeutic effect is likely attributable to the regulation of cardiomyocyte pyroptosis via the ROS/NLRP3 pathway. This discovery furnishes a prospective therapeutic target for the amelioration and management of MF associated with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Fibrosis , Sulfuro de Hidrógeno , Miocitos Cardíacos , Piroptosis , Ratas Sprague-Dawley , Animales , Piroptosis/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Ratas , Cistationina gamma-Liasa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estreptozocina , Miocardio/patología , Miocardio/metabolismo , Glicina/farmacología , Glicina/análogos & derivados , Supervivencia Celular/efectos de los fármacos
12.
Cell Death Discov ; 10(1): 114, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448410

RESUMEN

For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.

13.
Hum Genomics ; 18(1): 21, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414044

RESUMEN

BACKGROUND: Single-nucleotide variants (SNVs) within gene coding sequences can significantly impact pre-mRNA splicing, bearing profound implications for pathogenic mechanisms and precision medicine. In this study, we aim to harness the well-established full-length gene splicing assay (FLGSA) in conjunction with SpliceAI to prospectively interpret the splicing effects of all potential coding SNVs within the four-exon SPINK1 gene, a gene associated with chronic pancreatitis. RESULTS: Our study began with a retrospective analysis of 27 SPINK1 coding SNVs previously assessed using FLGSA, proceeded with a prospective analysis of 35 new FLGSA-tested SPINK1 coding SNVs, followed by data extrapolation, and ended with further validation. In total, we analyzed 67 SPINK1 coding SNVs, which account for 9.3% of the 720 possible coding SNVs. Among these 67 FLGSA-analyzed SNVs, 12 were found to impact splicing. Through detailed comparison of FLGSA results and SpliceAI predictions, we inferred that the remaining 653 untested coding SNVs in the SPINK1 gene are unlikely to significantly affect splicing. Of the 12 splice-altering events, nine produced both normally spliced and aberrantly spliced transcripts, while the remaining three only generated aberrantly spliced transcripts. These splice-impacting SNVs were found solely in exons 1 and 2, notably at the first and/or last coding nucleotides of these exons. Among the 12 splice-altering events, 11 were missense variants (2.17% of 506 potential missense variants), and one was synonymous (0.61% of 164 potential synonymous variants). Notably, adjusting the SpliceAI cut-off to 0.30 instead of the conventional 0.20 would improve specificity without reducing sensitivity. CONCLUSIONS: By integrating FLGSA with SpliceAI, we have determined that less than 2% (1.67%) of all possible coding SNVs in SPINK1 significantly influence splicing outcomes. Our findings emphasize the critical importance of conducting splicing analysis within the broader genomic sequence context of the study gene and highlight the inherent uncertainties associated with intermediate SpliceAI scores (0.20 to 0.80). This study contributes to the field by being the first to prospectively interpret all potential coding SNVs in a disease-associated gene with a high degree of accuracy, representing a meaningful attempt at shifting from retrospective to prospective variant analysis in the era of exome and genome sequencing.


Asunto(s)
Empalme del ARN , Inhibidor de Tripsina Pancreática de Kazal , Humanos , Inhibidor de Tripsina Pancreática de Kazal/genética , Estudios Retrospectivos , Empalme del ARN/genética , Exones/genética , Secuencia de Bases , Empalme Alternativo/genética
14.
Sci Rep ; 14(1): 3598, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351146

RESUMEN

This single-arm, multi-center clinical trial aimed to evaluate the safety, tolerability, DLT, recommended dose (RD), preliminary efficacy, and pharmacokinetics (PK) characteristics of lurbinectedin, a selective inhibitor of oncogenic transcription, in Chinese patients with advanced solid tumors, including relapsed SCLC. Patients with advanced solid tumors were recruited in the dose-escalation stage and received lurbinectedin in a 3 + 3 design (two cohorts: 2.5 mg/m2 and 3.2 mg/m2, IV, q3wk). The RD was expanded in the following dose-expansion stage, including relapsed SCLC patients after first-line platinum-based chemotherapy. The primary endpoints included safety profile, tolerability, DLT, RD, and preliminary efficacy profile, while the secondary endpoints included PK characteristics. In the dose-escalation stage, ten patients were included, while one patient had DLT in the 3.2 mg/m2 cohort, which was also the RD for the dose-expansion stage. At cutoff (May 31, 2022), 22 SCLC patients were treated in the ongoing dose-expansion stage, and the median follow-up was 8.1 months (range 3.0-11.7). The most common grade ≥ 3 treatment-related adverse events (TRAEs) included neutropenia (77.3%), leukopenia (63.6%), thrombocytopenia (40.9%), anemia (18.2%), and ALT increased (18.2%). The most common severe adverse events (SAEs) included neutropenia (27.3%), leukopenia (22.7%), thrombocytopenia (18.2%), and vomiting (9.1%). No treatment-related deaths occurred. The Independent Review Committee (IRC)-assessed ORR was 45.5% (95% CI 26.9-65.3). Lurbinectedin at the RD (3.2 mg/m2) showed manageable safety and acceptable tolerability in Chinese patients with advanced solid tumors, and demonstrates promising efficacy in Chinese patients with SCLC as second-line therapy.Trial registration: This study was registered with ClinicalTrials.gov NCT04638491, 20/11/2020.


Asunto(s)
Anemia , Carbolinas , Compuestos Heterocíclicos de 4 o más Anillos , Neoplasias Pulmonares , Neutropenia , Carcinoma Pulmonar de Células Pequeñas , Trombocitopenia , Humanos , Anemia/etiología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carbolinas/efectos adversos , China , Compuestos Heterocíclicos de 4 o más Anillos/efectos adversos , Neoplasias Pulmonares/patología , Neutropenia/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Trombocitopenia/etiología
15.
JCO Precis Oncol ; 8: e2300328, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38354329

RESUMEN

PURPOSE: MET amplification (METamp) has been reported in 1%-5% of patients with hepatocellular carcinoma (HCC) and may be sensitive to MET inhibition. Tepotinib, a selective MET inhibitor, has shown promising activity in HCC with MET overexpression. We investigated the preclinical and clinical activity of tepotinib in HCC with METamp (MET gene copy number [GCN] ≥5), including high-level METamp (MET GCN ≥10). METHODS: Preclinical antitumor activity of tepotinib 100 mg/kg (orally, days 1-5, every 7 days, 3-5 weeks; 3-12 replicates) was evaluated according to METamp status, as determined using the nCounter platform (NanoString), in 37 HCC patient-derived xenografts (PDXs) in immunodeficient mice. Clinical outcomes were evaluated in patients with METamp by fluorescence in situ hybridization who received tepotinib 500 mg (450 mg active moiety) in two phase Ib/II trials in HCC with MET overexpression. RESULTS: Across the PDX models, tepotinib induced complete or near-complete tumor regression in the only two models with high-level METamp. Median tumor volume reductions were 100% and 99.8% in models with MET GCN 47.1 and 44.0, respectively. Across the two clinical trials, 15/121 patients had METamp. Disease control was achieved by 11/15 patients with METamp (complete response [CR], n = 1; partial response [PR], n = 4; stable disease [SD], n = 6) and 4/4 with high-level METamp (CR, n = 1; PR, n = 2; SD, n = 1). All three patients with high-level METamp and objective response received treatment for >1 year, including one patient who received first-line tepotinib for >6 years. CONCLUSION: High-level METamp may be an oncogenic driver in HCC that is sensitive to MET inhibitors such as tepotinib.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Piperidinas , Piridazinas , Pirimidinas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Hibridación Fluorescente in Situ , Proteínas Proto-Oncogénicas c-met/genética
16.
Food Funct ; 15(3): 1705-1716, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38258506

RESUMEN

Although evidence supports an observational association between tea consumption and susceptibility to head and neck cancer, the causal nature of this association remains unclear. We performed a two-sample Mendelian randomization (MR) analysis to determine the causal effects of tea consumption on head and neck cancer. We employed a fixed-effects inverse variance-weighted model for the MR analysis. Genome-wide association study (GWAS) summary data for tea consumption were obtained from the UK Biobank Consortium, and GWAS data for head and neck cancer were derived from two data sources and were used as the outcomes. Our MR analysis revealed limited evidence for a causal relationship between various types of tea intake and head and neck cancer. After adjustment for smoking and alcohol consumption, there was no causal relationship between tea consumption and head and neck cancer. Further experimental studies are required to confirm its potential role in these malignancies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias de Cabeza y Cuello , Humanos , Análisis de la Aleatorización Mendeliana , Neoplasias de Cabeza y Cuello/genética , Consumo de Bebidas Alcohólicas , , Polimorfismo de Nucleótido Simple
17.
Acta Biomater ; 176: 321-333, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272199

RESUMEN

Hepatocellular carcinoma (HCC) cells, especially those with metastatic competence, show reduced stiffness compared to the non-malignant counterparts. However, it is still unclear whether and how the mechanics of HCC cells influence their migration and invasion. This study reports that HCC cells with enhanced motility show reduced mechanical stiffness and cytoskeleton, suggesting the inverse correlation between cellular stiffness and motility. Through pharmacologic and genetic approaches, inhibiting actomyosin activity reduces HCC cellular stiffness but promotes their migration and invasion, while activating it increases cell stiffness but impairs cell motility. Actomyosin regulates cell motility through the influence on cellular stiffness. Mechanistically, weakening/strengthening cells inhibits/promotes c-Jun N terminal kinase (JNK) phosphorylation, activation/inhibition of which rescues the effects of cell mechanics on their migration and invasion. Further, HCC cancer stem cells (CSCs) exhibit higher motility but lower stiffness than control cells. Increasing CSC stiffness weakens migration and invasion through the activation of JNK signaling. In conclusion, our findings unveil a new regulatory role of actomyosin-mediated cellular mechanics in tumor cell motility and present new evidence to support that tumor cell softening may be one driving force for HCC metastasis. STATEMENT OF SIGNIFICANCE: Tumor cells progressively become softened during metastasis and low cell stiffness is associated with high metastatic potential. However, it remains unclear whether tumor cell softening is a by-product of or a driving force for tumor progression. This work reports that the stiffness of hepatocellular carcinoma cells is linked to their migration and invasion. Importantly, tumor cell softening promotes migration and invasion, while cell stiffening impairs the mobility. Weakening/strengthening cells inhibits/promotes JNK phosphorylation, activation/inhibition of which rescues the effects of cell mechanics on their migration and invasion ability. Further, stiffening liver cancer stem cells attenuates their motility through activating JNK signaling. In summary, our study uncovers a previously unappreciated role of tumor cell mechanics in migration and invasion and implicates the therapeutic potential of cell mechanics in the mechanotargeting of metastasis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Actomiosina , Línea Celular Tumoral , Movimiento Celular/fisiología , Invasividad Neoplásica
18.
Nanomedicine (Lond) ; 19(7): 561-579, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38265008

RESUMEN

Aim: To investigate the mechanism of doxorubicin (DOX)-induced immunogenic cell death (ICD) and to improve immunotherapy efficacy. Materials & methods: In this study, hybrid vesicles containing DOX (HV-DOX) were prepared by thin-film hydration with extrusion, and the formulated nanoparticles were characterized physically. Furthermore, in vitro experiments and animal models were used to investigate the efficacy and new mechanisms of chemotherapy combined with immunotherapy. Results: DOX improved tumor immunogenicity by alkalinizing lysosomes, inhibiting tumor cell autophagy and inducing ICD. HVs could activate dendritic cell maturation, synergistically enhancing chemotherapeutic immunity. Conclusion: The mechanism of DOX-induced ICD was explored, and antitumor immunity was synergistically activated by HV-DOX to improve chemotherapeutic drug loading and provide relevant antigenic information.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Animales , Calefacción , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Inmunoterapia , Línea Celular Tumoral , Microambiente Tumoral
19.
Dalton Trans ; 53(3): 1058-1065, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38099604

RESUMEN

It is a major challenge to perform one-pot hydroxylation of benzene to phenol under mild conditions, which replaces the environmentally harmful cumene method. Thus, finding highly efficient heterogeneous catalysts that can be recycled is extremely significant. Herein, a (POM)-based hybrid compound {[FeII(pyim)2(C2H5O)][FeII(pyim)2(H2O)][PMoV2MoVI9VIV3O42]}·H2O (pyim = 2-(2-pyridyl)benzimidazole) (Fe2-PMo11V3) was successfully prepared by hydrothermal synthesis using typical Keggin POMs, iron ions and pyim ligands. Single-crystal diffraction shows that the Fe-pyim unit in Fe2-PMo11V3 forms a stable double-supported skeleton by Fe-O bonding to the polyacid anion. Remarkably, due to the introduction of vanadium, Fe2-PMo11V3 forms a divanadium-capped conformation. Benzene oxidation experiments indicated that Fe2-PMo11V3 can catalyze the benzene hydroxylation reaction to phenol in a mixed solution of acetonitrile and acetic acid containing H2O2 at 60 °C, affording a phenol yield of about 16.2% and a selectivity of about 94%.

20.
Anal Chem ; 96(1): 437-445, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150621

RESUMEN

Damage of reactive oxygen species to various molecules such as DNA has been related to many chronic and degenerative human diseases, aging, and even cancer. 8-Oxo-7,8-dihydroguanine (OG), the most significant oxidation product of guanine (G), has become a biomarker of oxidative stress as well as gene regulation. The positive effect of OG in activating transcription and the negative effect in inducing mutation are a double-edged sword; thus, site-specific quantification is helpful to quickly reveal the functional mechanism of OG at hotspots. Due to the possible biological effects of OG at extremely low abundance in the genome, the monitoring of OG is vulnerable to signal interference from a large amount of G. Herein, based on rolling circle amplification-induced G-triplex formation and Thioflavin T fluorescence enhancement, an ultrasensitive strategy for locus-specific OG quantification was constructed. Owing to the difference in the hydrogen-bonding pattern between OG and G, the nonspecific background signal of G sites was completely suppressed through enzymatic ligation of DNA probes and the triggered specificity of rolling circle amplification. After the signal amplification strategy was optimized, the high detection sensitivity of OG sites with an ultralow detection limit of 0.18 amol was achieved. Under the interference of G sites, as little as 0.05% of OG-containing DNA was first distinguished. This method was further used for qualitative and quantitative monitoring of locus-specific OG in genomic DNA under oxidative stress and identification of key OG sites with biological function.


Asunto(s)
ADN , Guanina , Humanos , ADN/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno , Técnicas de Amplificación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA