Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
J Clin Invest ; 133(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37317963

RESUMEN

RAS mutations are among the most prevalent oncogenic drivers in cancers. RAS proteins propagate signals only when associated with cellular membranes as a consequence of lipid modifications that impact their trafficking. Here, we discovered that RAB27B, a RAB family small GTPase, controlled NRAS palmitoylation and trafficking to the plasma membrane, a localization required for activation. Our proteomic studies revealed RAB27B upregulation in CBL- or JAK2-mutated myeloid malignancies, and its expression correlated with poor prognosis in acute myeloid leukemias (AMLs). RAB27B depletion inhibited the growth of CBL-deficient or NRAS-mutant cell lines. Strikingly, Rab27b deficiency in mice abrogated mutant but not WT NRAS-mediated progenitor cell growth, ERK signaling, and NRAS palmitoylation. Further, Rab27b deficiency significantly reduced myelomonocytic leukemia development in vivo. Mechanistically, RAB27B interacted with ZDHHC9, a palmitoyl acyltransferase that modifies NRAS. By regulating palmitoylation, RAB27B controlled c-RAF/MEK/ERK signaling and affected leukemia development. Importantly, RAB27B depletion in primary human AMLs inhibited oncogenic NRAS signaling and leukemic growth. We further revealed a significant correlation between RAB27B expression and sensitivity to MEK inhibitors in AMLs. Thus, our studies presented a link between RAB proteins and fundamental aspects of RAS posttranslational modification and trafficking, highlighting future therapeutic strategies for RAS-driven cancers.


Asunto(s)
Leucemia Mieloide , Lipoilación , Humanos , Animales , Ratones , Proteómica , Transducción de Señal , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas de la Membrana/genética , GTP Fosfohidrolasas
3.
Nat Biomed Eng ; 7(10): 1242-1251, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37055542

RESUMEN

Monitoring X-ray radiation in the gastrointestinal tract can enhance the precision of radiotherapy in patients with gastrointestinal cancer. Here we report the design and performance, in the gastrointestinal tract of rabbits, of a swallowable X-ray dosimeter for the simultaneous real-time monitoring of absolute absorbed radiation dose and of changes in pH and temperature. The dosimeter consists of a biocompatible optoelectronic capsule containing an optical fibre, lanthanide-doped persistent nanoscintillators, a pH-sensitive polyaniline film and a miniaturized system for the wireless readout of luminescence. The persistent luminescence of the nanoscintillators after irradiation can be used to continuously monitor pH without the need for external excitation. By using a neural-network-based regression model, we estimated the radiation dose from radioluminescence and afterglow intensity and temperature, and show that the dosimeter was approximately five times more accurate than standard methods for dose determination. Swallowable dosimeters may help to improve radiotherapy and to understand how radiotherapy affects tumour pH and temperature.

4.
Nat Cancer ; 3(5): 581-594, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314826

RESUMEN

Gastrointestinal cancers (GICs) and neuroendocrine tumors (NETs) are often refractory to therapy after metastasis. Adoptive cell therapy using chimeric antigen receptor (CAR) T cells, though remarkably efficacious for treating leukemia, is yet to be developed for solid tumors such as GICs and NETs. Here we isolated a llama-derived nanobody, VHH1, and found that it bound cell surface adhesion protein CDH17 upregulated in GICs and NETs. VHH1-CAR T cells (CDH17CARTs) killed both human and mouse tumor cells in a CDH17-dependent manner. CDH17CARTs eradicated CDH17-expressing NETs and gastric, pancreatic and colorectal cancers in either tumor xenograft or autochthonous mouse models. Notably, CDH17CARTs do not attack normal intestinal epithelial cells, which also express CDH17, to cause toxicity, likely because CDH17 is localized only at the tight junction between normal intestinal epithelial cells. Thus, CDH17 represents a class of previously unappreciated tumor-associated antigens that is 'masked' in healthy tissues from attack by CAR T cells for developing safer cancer immunotherapy.


Asunto(s)
Neoplasias Gastrointestinales , Tumores Neuroendocrinos , Receptores Quiméricos de Antígenos , Animales , Neoplasias Gastrointestinales/terapia , Humanos , Ratones , Tumores Neuroendocrinos/terapia , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Endocrinol ; 252(2): 107-123, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34788229

RESUMEN

Gestational diabetes mellitus (GDM) is a condition of diabetes with onset or first recognition in pregnancy. Its incidence is increasing, and GDM deleteriously affects both mother and the fetus during and even after pregnancy. Previous studies in mice have shown that during pregnancy, ß-cell proliferation increases in the middle and late stages of pregnancy and returns to normal levels after delivery. Hormones, such as prolactin, estradiol, and progesterone as well as protein kinases, play important roles in regulating gestation-mediated ß-cell proliferation; however, the regulatory relationship between them is uncertain. We previously found that protein kinase Pbk was crucial for basal proliferation of mouse islet cells. Herein we show that Pbk is upregulated during pregnancy in mice and Pbk kinase activity is required for enhanced ß- cell proliferation during pregnancy. Notably, knock-in (KI) of a kinase-inactivating Pbk mutation leads to impaired glucose tolerance and reduction of ß-cell proliferation and islet mass in mice during pregnancy. Prolactin upregulates the expression of Pbk, but the upregulation is diminished by knockdown of the prolactin receptor and by the inhibitors of JAK and STAT5, which mediate prolactin receptor signaling, in ß-cells. Treatment of ß-cells with prolactin increases STAT5 binding to the Pbk locus, as well as the recruitment of RNA polymerase II, resulting in increased Pbk transcription. These results demonstrate that Pbk is upregulated during pregnancy, at least partly by prolactin-induced and STAT5-mediated enhancement of gene transcription, and Pbk is essential for pregnancy-induced ß-cell proliferation, increase in islet mass, and maintenance of normal blood glucose during pregnancy in preclinical models. These findings provide new insights into the interplay between hormones and protein kinases that ultimately prevent the development of GDM.


Asunto(s)
Células Secretoras de Insulina/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Embarazo/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Prolactina/metabolismo , Prolactina/farmacología , Ratas
6.
EMBO Mol Med ; 13(5): e13524, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33821572

RESUMEN

Pancreatic beta cells undergo compensatory proliferation in the early phase of type 2 diabetes. While pathways such as FoxM1 are involved in regulating compensatory beta cell proliferation, given the lack of therapeutics effectively targeting beta cell proliferation, other targetable pathways need to be identified. Herein, we show that Pbk, a serine/threonine protein kinase, is essential for high fat diet (HFD)-induced beta cell proliferation in vivo using a Pbk kinase deficiency knock-in mouse model. Mechanistically, JunD recruits menin and HDAC3 complex to the Pbk promoter to reduce histone H3 acetylation, leading to epigenetic repression of Pbk expression. Moreover, menin inhibitor (MI) disrupts the menin-JunD interaction and augments Pbk transcription. Importantly, MI administration increases beta cell proliferation, ameliorating hyperglycemia, and impaired glucose tolerance (IGT) in HFD-induced diabetic mice. Notably, Pbk is required for the MI-induced beta cell proliferation and improvement of IGT. Together, these results demonstrate the repressive role of the menin/JunD/Pbk axis in regulating HFD-induced compensatory beta cell proliferation and pharmacologically regulating this axis may serve as a novel strategy for type 2 diabetes therapy.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina/citología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proliferación Celular , Dieta Alta en Grasa/efectos adversos , Histona Desacetilasas , Ratones , Proteínas Proto-Oncogénicas c-jun
8.
Biosci Rep ; 39(10)2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31652443

RESUMEN

Menin is encoded by multiple endocrine neoplasia type 1 (MEN1) gene, the germ line mutations of which are the main cause of pancreatic neuroendocrine tumors (PNETs). To date, a large number of frameshift, nonsense and missense mutations of MEN1 have been identified to be responsible for part of MEN1-defficient PNETs patients due to truncation or rapid degradation of menin protein. However, the stability of the wild-type (WT) menin in PNETs is totally unknown. In the present study, we observed ubiquitination of WT menin in 293T cells by transfection of ectopic WT menin and HA-ubiquitin. As expected, either endogenous or ectopic WT menin is stable in 293T cells, whereas in INS-1 cells, a rat insulinoma cell line derived from PNETs, either endogenous or ectopic WT menin is rapidly degraded through ubiquitin-proteasome pathway. Furthermore, the degradation of WT menin is more rapid in the presence of serum. Our findings suggest that in part of PNETs patients with WT MEN1, a ubiquitin-proteasome system targeting menin is untimely activated.


Asunto(s)
Insulinoma/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Animales , Insulinoma/genética , Insulinoma/patología , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Complejo de la Endopetidasa Proteasomal/genética , Ratas , Factores de Transcripción/genética , Ubiquitina/genética
9.
J Cell Biol ; 218(3): 855-870, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30792230

RESUMEN

Both menin and glucagon-like peptide 1 (GLP-1) pathways play central yet opposing role in regulating ß cell function, with menin suppressing, and GLP-1 promoting, ß cell function. However, little is known as to whether or how GLP-1 pathway represses menin function. Here, we show that GLP-1 signaling-activated protein kinase A (PKA) directly phosphorylates menin at the serine 487 residue, relieving menin-mediated suppression of insulin expression and cell proliferation. Mechanistically, Ser487-phosphorylated menin gains increased binding affinity to nuclear actin/myosin IIa proteins and gets sequestrated from the Ins1 promoter. This event leads to reduced binding of repressive epigenetic histone modifiers suppressor variegation 3-9 homologue protein 1 (SUV39H1) and histone deacetylases 1 (HDAC1) at the locus and subsequently increased Ins1 gene transcription. Ser487 phosphorylation of menin also increases expression of proproliferative cyclin D2 and ß cell proliferation. Our results have uncovered a previously unappreciated physiological link in which GLP-1 signaling suppresses menin function through phosphorylation-triggered and actin/myosin cytoskeletal protein-mediated derepression of gene transcription.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Transducción de Señal , Factores de Transcripción/biosíntesis , Transcripción Genética , Activación Transcripcional , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Péptido 1 Similar al Glucagón/genética , Células HEK293 , Humanos , Células Secretoras de Insulina/citología , Metiltransferasas , Ratones , Ratas , Ratas Wistar , Proteínas Represoras , Factores de Transcripción/genética
10.
Pancreas ; 48(2): 267-274, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30629029

RESUMEN

OBJECTIVES: Menin, a chromatin binding protein, interacts with various epigenetic regulators to regulate gene transcription, whereas forkhead box protein O1 (FOXO1) is a transcription factor that can be regulated by multiple signaling pathways. Both menin and FOXO1 are crucial regulators of ß-cell function and metabolism; however, whether or how they interplay to regulate ß cells is not clear. METHODS: To examine whether menin affects expression of FOXO1, we ectopically expressed menin complementary DNA and small hairpin RNA targeting menin via a retroviral vector in INS-1 cells. Western blotting was used to analyze protein levels. RESULTS: Our current work shows that menin increases the expression of FOXO1. Menin stabilizes FOXO1 protein level in INS-1 cells, as shown by increased half-life of FOXO1 by menin expression. Moreover, menin represses ubiquitination of FOXO1 protein and AKT phosphorylation, We found that menin stabilizes FOXO1 by repressing FOXO1 degradation mediated by S-phase kinase-associated protein 2 (Skp2), an E3 ubiquitin ligase, promoting caspase 3 activation and apoptosis. CONCLUSIONS: Because FOXO1 upregulates the menin gene transcription, our findings unravel a crucial menin and FOXO1 interplay, with menin and FOXO1 upregulating their expression reciprocally, forming a positive feedback loop to sustain menin and FOXO1 expression.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Regulación hacia Arriba , Animales , Línea Celular Tumoral , Proteína Forkhead Box O1/genética , Células HEK293 , Humanos , Fosforilación , Estabilidad Proteica , Proteolisis , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Proteínas Quinasas Asociadas a Fase-S/genética , Ubiquitinación
11.
Diabetes ; 67(7): 1345-1355, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29716892

RESUMEN

We investigated how human proislet peptide (HIP) regulates differentiation of human fetus-derived pancreatic progenitor cells (HFPPCs) and explored the potential link between HIP signaling and the menin pathway, which is key to regulating pancreatic islet differentiation. The data show that HIP promoted expression of proislet transcription factors (TFs), including PDX-1, MAFA, and NKX6.1, as well as other maturation markers of ß-cells, such as insulin, GLUT2, KIR6.2, SUR1, and VDCC. Moreover, HIP increased insulin content and promoted the ability of HFPPCs to normalize blood glucose in diabetic mice. HIP inhibited the TF FOXO1 by increasing AKT-mediated phosphorylation. HIP-induced repression of FOXO1 suppressed menin expression, leading to reducing menin binding to the promoter of the three key proislet TFs, decreasing recruitment of H3K9 methyltransferase SUV39H1, and thus reducing repressive H3K9me3 at the promoter. These coordinated actions lead to increased expression of the proislet TFs, resulting in induction of HFPPC differentiation. Consistently, constitutive activation of FOXO1 blocks HIP-induced transcription of these TFs. Together, these studies unravel the crucial role of the HIP/AKT/FOXO/menin axis in epigenetically controlling expression of proislet TFs, regulating the differentiation of HFPPCs, and normalizing blood glucose in diabetic mice.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/genética , Epigénesis Genética/efectos de los fármacos , Proteína Forkhead Box O1/genética , Péptidos/farmacología , Proteínas Proto-Oncogénicas/genética , Células Madre/efectos de los fármacos , Animales , Diferenciación Celular/genética , Células Cultivadas , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/terapia , Células HEK293 , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Células Secretoras de Insulina/trasplante , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Páncreas/citología , Páncreas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Madre/fisiología
12.
J Mol Biol ; 429(24): 3836-3849, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29079481

RESUMEN

Heterotrimeric G-proteins are essential cellular signal transducers. One of the G-proteins, Gα13, is critical for actin cytoskeletal reorganization, cell migration, cell proliferation, and apoptosis. Previously, we have shown that Gα13 is essential for both G-protein-coupled receptor and receptor tyrosine kinase-induced actin cytoskeletal reorganization such as dynamic dorsal ruffle turnover and cell migration. However, the mechanism by which Gα13 signals to actin cytoskeletal reorganization is not completely understood. Here we show that Gα13 directly interacts with Abl tyrosine kinase, which is a critical regulator of actin cytoskeleton. This interaction is critical for Gα13-induced dorsal ruffle turnover, endothelial cell remodeling, and cell migration. Our data uncover a new molecular signaling pathway by which Gα13 controls actin cytoskeletal reorganization.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular/fisiología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Proteínas Oncogénicas v-abl/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Ratones , Ratones Noqueados , Proteínas Oncogénicas v-abl/genética , Transducción de Señal , Esferoides Celulares , Cicatrización de Heridas
13.
Am J Physiol Endocrinol Metab ; 313(2): E148-E166, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28270438

RESUMEN

Menin is a scaffold protein that interacts with several epigenetic mediators to regulate gene transcription, and suppresses pancreatic ß-cell proliferation. Tamoxifen-inducible deletion of multiple endocrine neoplasia type 1 (MEN1) gene, which encodes the protein menin, increases ß-cell mass in multiple murine models of diabetes and ameliorates diabetes. Glucagon-like-peptide-1 (GLP1) is another key physiological modulator of ß-cell mass and glucose homeostasis. However, it is not clearly understood whether menin crosstalks with GLP1 signaling. Here, we show that menin and protein arginine methyltransferase 5 (PRMT5) suppress GLP1 receptor (GLP1R) transcript levels. Notably, a GLP1R agonist induces phosphorylation of forkhead box protein O1 (FOXO1) at S253, and the phosphorylation is mediated by PKA. Interestingly, menin suppresses GLP1-induced and PKA-mediated phosphorylation of both FOXO1 and cAMP response element binding protein (CREB), likely through a protein arginine methyltransferase. Menin-mediated suppression of FOXO1 and CREB phosphorylation increases FOXO1 levels and suppresses CREB target genes, respectively. A small-molecule menin inhibitor reverses menin-mediated suppression of both FOXO1 and CREB phosphorylation. In addition, ex vivo treatment of both mouse and human pancreatic islets with a menin inhibitor increases levels of proliferation marker Ki67. In conclusion, our results suggest that menin and PRMT5 suppress GLP1R transcript levels and PKA-mediated phosphorylation of FOXO1 and CREB, and a menin inhibitor may reverse this suppression to induce ß-cell proliferation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteína Forkhead Box O1/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Proteína-Arginina N-Metiltransferasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Animales , Células Cultivadas , Regulación hacia Abajo/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Transducción de Señal
14.
Cancer Res ; 77(2): 401-411, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27872097

RESUMEN

Neuroendocrine tumors (NET) often harbor loss-of-function mutations in the MEN1 and DAXX tumor suppressor genes. Here, we report that the products of these genes, menin and Daxx, interact directly with each other to suppress the proliferation of NET cells, to a large degree by inhibiting expression of the membrane metallo-endopeptidase (MME). Menin and Daxx were required to enhance histone H3 lysine9 trimethylation (H3K9me3) at the MME promoter, as mediated partly by the histone H3 methyltransferase SUV39H1. Notably, the menin T429K mutation associated with a NET syndrome reduced Daxx binding, MME repression, and proliferation of NET cells. Conversely, inhibition of MME in NET cells repressed proliferation and tumor growth in vivo Our findings reveal a previously unappreciated cross-talk between two crucial tumor suppressor genes thought to work by independent pathways, focusing on MME as a common target of menin/Daxx to treat NET. Cancer Res; 77(2); 401-11. ©2016 AACR.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Regulación Neoplásica de la Expresión Génica/genética , Neprilisina/genética , Tumores Neuroendocrinos/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/genética , Animales , Western Blotting , Proteínas Co-Represoras , Epigénesis Genética , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Inmunoprecipitación , Ratones , Ratones Desnudos , Chaperonas Moleculares , Neprilisina/biosíntesis , Tumores Neuroendocrinos/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Mol Oncol ; 10(7): 966-80, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27071719

RESUMEN

Tumor metastasis is the major cause of mortality of cancer patients, being responsible for ∼90% of all cancer deaths. One of the key steps during tumor metastasis is tumor cell migration which requires actin cytoskeletal reorganization. Among the critical actin cytoskeletal protrusion structures are antenna-like filopodia. Fascin protein is the main actin-bundling protein in filopodia. Here we report the development of fascin-specific small-molecules that inhibit the interaction between fascin and actin. These inhibitors block the in vitro actin-binding and actin-bundling activities of fascin, tumor cell migration and tumor metastasis in mouse models. Mechanistically, these inhibitors likely occupy one of the actin-binding sites, reduce the binding of actin filaments, and thus lead to the inhibition of the bundling activity of fascin. At the cellular level, these inhibitors impair actin cytoskeletal reorganization. Our data indicate that target-specific anti-fascin agents will have great potential for treating metastatic tumors.


Asunto(s)
Neoplasias de la Mama/patología , Proteínas Portadoras/antagonistas & inhibidores , Movimiento Celular , Proteínas de Microfilamentos/antagonistas & inhibidores , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Humanos , Ratones Endogámicos BALB C , Proteínas de Microfilamentos/metabolismo , Metástasis de la Neoplasia , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/metabolismo
16.
Nat Commun ; 6: 7465, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26081695

RESUMEN

One of the key steps during tumour metastasis is tumour cell migration and invasion, which require actin cytoskeletal reorganization. Among the critical actin cytoskeletal protrusion structures are the filopodia, which act like cell sensory organs to communicate with the extracellular microenvironment and participate in fundamental cell functions such as cell adhesion, spreading and migration in the three-dimensional environment. Fascin is the main actin-bundling protein in filopodia. Using high-throughput screening, here we identify and characterize small molecules that inhibit the actin-bundling activity of fascin. Focusing on one such inhibitor, we demonstrate that it specifically blocks filopodial formation, tumour cell migration and invasion in vitro, and metastasis in vivo. Hence, target-specific anti-fascin agents have a therapeutic potential for cancer treatment.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Indazoles/uso terapéutico , Proteínas de Microfilamentos/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Seudópodos/efectos de los fármacos , Actinas/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Indazoles/farmacología , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID
17.
J Biol Chem ; 289(18): 12666-78, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24648518

RESUMEN

Protein-tyrosine kinase C-terminal Src kinase (Csk) was originally purified as a kinase for phosphorylating Src and other Src family kinases. The phosphorylation of a C-terminal tyrosine residue of Src family kinases suppresses their kinase activity. Therefore, most physiological studies regarding Csk function have been focused on Csk as a negative regulator of Src family tyrosine kinases and as a potential tumor suppressor. Paradoxically, the protein levels of Csk were elevated in some human carcinomas. In this report, we show that eukaryotic elongation factor 2 (eEF2) is a new protein substrate of Csk and could locate in the nucleus. We demonstrate that Csk-mediated phosphorylation of eEF2 has no effect on its cytoplasmic function in regulating protein translation. However, phosphorylation of eEF2 enhances its proteolytic cleavage and the nuclear translocation of the cleaved eEF2 through a SUMOylation-regulated process. Furthermore, we show that cleaved fragments of eEF2 can induce nuclear morphological changes and aneuploidy similar to those in cancer cells, suggesting that there is an additional mechanism for Csk in tumorigenesis through regulation of eEF2 subcellular localization.


Asunto(s)
Núcleo Celular/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Familia-src Quinasas/metabolismo , Transporte Activo de Núcleo Celular , Aneuploidia , Animales , Western Blotting , Proteína Tirosina Quinasa CSK , Núcleo Celular/genética , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Factor 2 de Elongación Peptídica/genética , Fosforilación , Proteolisis , Interferencia de ARN , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Especificidad por Sustrato , Sumoilación , Familia-src Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA