Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Heliyon ; 10(11): e31431, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845972

RESUMEN

Colorectal cancer is one of the most common malignancies and ranks second in terms of cancer-related mortality worldwide due to its metastasis, drug resistance, and reoccurrence. High-mobility gene group A2 (HMGA2) is overexpressed in colorectal cancer, contributing to the aggressiveness of tumor malignance, and promotes drug resistance in many types of cancer. However, the underlying molecular mechanism of HMGA2 is yet to be elucidated. In this study, we showed that HMGA2 is overexpressed in colorectal cancer tissue, and knockdown of HMGA2 significantly inhibited colorectal cancer cell growth and migratory capability. HMGA2 regulates the cancer cell response to a widely used anti-cancer drug, paclitaxel (PTX). HMGA2 knockdown increased cell death, whereas HMGA2 overexpression decreased cell death after PTX treatment. Furthermore, lower reactive oxygen species (ROS) levels and mitochondrial potential were detected in HMGA2 overexpression cells after PTX treatment. However, HMGA2 knockdown produced the opposite effect. RNA sequencing showed a p53 signaling pathway-dependent regulation in HMGA2 knockdown cells. Combined with p53 inhibitors and HMGA2 knockdown, a synergetic effect of more cell death was observed in colorectal cancer cells after PTX treatment. Thus, we showed that HMGA2 can activate p53 signaling to regulate colorectal cancer cell death after PTX treatment. Altogether, our results reveal novel insights into the molecular mechanisms underlying HMGA2-mediated cancer cell resistance against PTX and highlight the potential of targeting HMGA2 and p53 signaling for the therapeutic investigation of colorectal cancer.

2.
Cell Death Dis ; 15(5): 335, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744853

RESUMEN

PTENα/ß, two variants of PTEN, play a key role in promoting tumor growth by interacting with WDR5 through their N-terminal extensions (NTEs). This interaction facilitates the recruitment of the SET1/MLL methyltransferase complex, resulting in histone H3K4 trimethylation and upregulation of oncogenes such as NOTCH3, which in turn promotes tumor growth. However, the molecular mechanism underlying this interaction has remained elusive. In this study, we determined the first crystal structure of PTENα-NTE in complex with WDR5, which reveals that PTENα utilizes a unique binding motif of a sequence SSSRRSS found in the NTE domain of PTENα/ß to specifically bind to the WIN site of WDR5. Disruption of this interaction significantly impedes cell proliferation and tumor growth, highlighting the potential of the WIN site inhibitors of WDR5 as a way of therapeutic intervention of the PTENα/ß associated cancers. These findings not only shed light on the important role of the PTENα/ß-WDR5 interaction in carcinogenesis, but also present a promising avenue for developing cancer treatments that target this pathway.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/química , Animales , Ratones , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Proliferación Celular/genética , Progresión de la Enfermedad , Unión Proteica , Línea Celular Tumoral , Ratones Desnudos , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/química , Dominios Proteicos , Secuencias de Aminoácidos
3.
Acta Pharmacol Sin ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622288

RESUMEN

Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.

4.
World J Gastrointest Surg ; 16(3): 966-973, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38577088

RESUMEN

BACKGROUND: Colorectal cavernous hemangioma is a rare vascular malformation resulting in recurrent lower gastrointestinal hemorrhage, and can be misinterpreted as colitis. Surgical resection is currently the mainstay of treatment, with an emphasis on sphincter preservation. CASE SUMMARY: We present details of two young patients with a history of persistent hematochezia diagnosed with colorectal cavernous hemangioma by endoscopic ultrasound (EUS). Cavernous hemangioma was relieved by several EUS-guided lauromacrogol injections and the patients achieved favorable clinical prognosis. CONCLUSION: Multiple sequential EUS-guided injections of lauromacrogol is a safe, effective, cost-efficient, and minimally invasive alternative for colorectal cavernous hemangioma.

5.
Theranostics ; 14(6): 2345-2366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646645

RESUMEN

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Asunto(s)
Histona Desacetilasa 6 , Ratones Transgénicos , Factor de Crecimiento Nervioso , Folículo Ovárico , Ubiquitinación , Animales , Femenino , Humanos , Ratones , Acetilación , Células de la Granulosa/metabolismo , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Factor de Crecimiento Nervioso/metabolismo , Folículo Ovárico/metabolismo
6.
Biotechnol J ; 19(3): e2300650, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38479990

RESUMEN

S-Adenosyl-L-methionine (SAM) is a substrate for many enzyme-catalyzed reactions and provides methyl groups in numerous biological methylations, and thus has vast applications in the agriculture and medical field. Saccharomyces cerevisiae has been engineered as a platform with significant potential for producing SAM, but the current production has room for improvement. Thus, a method that consists of a series of metabolic engineering strategies was established in this study. These strategies included enhancing SAM synthesis, increasing ATP supply, down-regulating SAM metabolism, and down-regulating competing pathway. After combinatorial metabolic engineering, Bayesian optimization was conducted on the obtained strain C262P6S to optimize the fermentation medium. A final yield of 2972.8 mg·L-1 at 36 h with 29.7% of the L-Met conversion rate in the shake flask was achieved, which was 26.3 times higher than that of its parent strain and the highest reported production in the shake flask to date. This paper establishes a feasible foundation for the construction of SAM-producing strains using metabolic engineering strategies and demonstrates the effectiveness of Bayesian optimization in optimizing fermentation medium to enhance the generation of SAM.


Asunto(s)
Metionina , S-Adenosilmetionina , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ingeniería Metabólica/métodos , Teorema de Bayes , Fermentación , Racemetionina/metabolismo
7.
Biomed Pharmacother ; 172: 116259, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359488

RESUMEN

Gastric cancer is a highly metastatic malignant tumor with high morbidity and mortality globally. Recent studies reported that sulfonamide derivatives such as indisulam exhibited inhibitory effects on the viability and migration of cancer cells. However, multiple clinical trials revealed that indisulam did not significantly prevent cancer progression due to metastasis and drug resistance. Therefore, it is necessary to discover new potent derivatives to explore alternative therapeutic strategies. Here, we synthesize multiple indisulam derivatives and examine their inhibitory effects on the viability and migration of gastric cancer cells. Among them, compounds SR-3-65 and WXM-1-170 exhibit better inhibitory effects on the migration of gastric cancer cells than indisulam. Mechanistically, we discover that they could attenuate the PI3K/AKT/GSK-3ß/ß-catenin signaling pathway and lead to the suppression of epithelial-to-mesenchymal transition (EMT)-related transcription factors. The influence of SR-3-65 on the migration of gastric cancer cells is blocked by the PI3K inhibitor LY294002 while SR-3-65 and WXM-1-170 reverse the effect of PI3K activator 740 Y-P on the migration of gastric cancer cells. Molecular docking and molecular dynamics simulation further confirm that PI3K is the target of SR-3-65. Our study unveils a novel mechanism by which SR-3-65 and WXM-1-170 inhibit the migration of gastric cancer cells. Together with the previous discovery, we reveal that subtle structural change in indisulam results in a striking switch on the molecular targets and their associated signaling pathways for the inhibition of the migration of gastric cancer cells. These findings might provide informative insights for the development of targeted therapy for gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Simulación del Acoplamiento Molecular , Sulfonamidas
8.
Curr Top Med Chem ; 24(3): 243-258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38231069

RESUMEN

The Hedgehog (Hh) signaling pathway plays a crucial role in diverse biological processes such as cell differentiation, proliferation, senescence, tumorigenesis, malignant transformation, and drug resistance. Aberrant Hh signaling, resulting from mutations and excessive activation, can contribute to the development of various diseases during different stages of biogenesis and development. Moreover, it has been linked to unfavorable outcomes in several human cancers, including basal cell carcinoma (BCC), multiple myeloma (MM), melanoma, and breast cancer. Hence, the presence of mutations and excessive activation of the Hh pathway presents obstacles and constraints in the realm of cancer treatment. Extant research has demonstrated that small molecule inhibitors are regarded as the most effective therapeutic approaches for targeting the Hh pathway in contrast to traditional chemotherapy and radiotherapy. Consequently, this review focuses on the present repertoire of small molecule inhibitors that target various components of the Hh pathway, including Hh ligands, Ptch receptors, Smo transmembrane proteins, and Gli nuclear transcription factors. This study provides a comprehensive analysis of small molecules' structural and functional aspects in the preclinical and clinical management of cancer. Additionally, it elucidates the obstacles encountered in targeting the Hh pathway for human cancer therapy and proposes potential therapeutic approaches.


Asunto(s)
Antineoplásicos , Proteínas Hedgehog , Neoplasias , Transducción de Señal , Humanos , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/metabolismo , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Animales
9.
Crit Rev Biotechnol ; 44(3): 448-461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-36944486

RESUMEN

L-serine and its derivative L-cysteine have broad industrial applications, and their direct fermentative production from renewable biomass is gaining increasing attention. Corynebacterium glutamicum is an extensively studied and well-established industrial microorganism, which is a predominant microbial host for producing amino acids. In this review, updated information on the genetics and molecular mechanisms underlying L-serine and L-cysteine production using C. glutamicum is presented, including their synthesis and degradation pathways, and other intracellular processes related to their production, as well as the mechanisms underlying substrate import and product export are also analyzed. Furthermore, metabolic strategies for strain improvement are systematically discussed, and conclusions and future perspectives for bio-based L-serine and L-cysteine production using C. glutamicum are presented. This review can provide a thorough understanding of L-serine and L-cysteine metabolic pathways to facilitate metabolic engineering modifications of C. glutamicum and development of more efficient industrial fermentation processes for L-serine and L-cysteine production.


Asunto(s)
Corynebacterium glutamicum , Cisteína , Cisteína/metabolismo , Serina/metabolismo , Corynebacterium glutamicum/genética , Aminoácidos/metabolismo , Ingeniería Metabólica , Fermentación
10.
Biochem Pharmacol ; 220: 116004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142837

RESUMEN

Ephrin B3, a member of Eph/ephrin family, contributes to embryogenesis and carcinogenesis, but few studies have suggested whether this ligand has regulatory effect on colitis. This study was to determine whether ephrin B3 played a role in colitis and colonic carcinogenesis. Dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated carcinogenesis model was established in Efnb3-deficient (Efnb3-/-) mice. Label-free quantitative proteomics were performed to identify the Efnb3-regulated proteins. Our results showed that Efnb3 knock out reduced the symptoms of DSS-induced colitis, such as disease activity index (DAI), inflammatory factors release, and dysfunction of the intestinal barrier. Quantitative proteomics revealed that Efnb3 regulated 95 proteins which clustered in the platelet degranulation, response to elevated platelet cytosolic Ca2+, MAPK signaling for integrins such as ITGB4. Furthermore, ephrin B3 inactived ITGB4/AKT signal pathway and then promoted epithelial barrier dysfunction. Simultaneously, ephrin B3 promoted Gremlin-1/NF-κB signal pathway and thereby increased inflammatory factors release. In addition, the higher level of Efnb3 in colon cancer patients is correlated with worse survival. Efnb3-/- mice exhibited susceptibility to AOM/DSS-induced colorectal cancer. Our finding discovered that Efnb3 played an important role in the development of colitis and colitis-associated colorectal cancer. Efnb3 deficiency improved the intestinal barrier by ITGB4 and suppressed inflammation via Gremlin-1/NF-κB signal pathway, which may provide a novel therapeutic strategy for the treatment of colitis and colitis-associated colorectal cancer.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Neoplasias Colorrectales , Humanos , Animales , Ratones , Efrina-B3 , FN-kappa B/metabolismo , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/metabolismo , Carcinogénesis , Azoximetano/toxicidad , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neoplasias Colorrectales/metabolismo
11.
Inflamm Res ; 73(3): 345-362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38157008

RESUMEN

OBJECTIVES: Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS: The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS: AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION: We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.


Asunto(s)
Colitis , Saponinas , Ratas , Ratones , Animales , Piruvato Carboxilasa/metabolismo , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/metabolismo , Saponinas/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Macrófagos/metabolismo , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
12.
Metab Eng ; 81: 238-248, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160746

RESUMEN

Previously, a novel Corynebacterium glutamicum strain for the de novo biosynthesis of tailored poly-γ-glutamic acid (γ-PGA) has been constructed by our group. The strain was based on the γ-PGA synthetase complex, PgsBCA, which is the only polyprotein complex responsible for γ-PGA synthesis in Bacillus spp. In the present study, PgsBCA was reconstituted and overexpressed in C. glutamicum to further enhance γ-PGA synthesis. First, we confirmed that all the components (PgsB, PgsC, and PgsA) of γ-PGA synthetase derived from B. licheniformis are necessary for γ-PGA synthesis, and γ-PGA was detected only when PgsB, PgsC, and PgsA were expressed in combination in C. glutamicum. Next, the expression level of each pgsB, pgsC, and pgsA was tuned in order to explore the effect of expression of each of the γ-PGA synthetase subunits on γ-PGA production. Results showed that increasing the transcription levels of pgsB or pgsC and maintaining a medium-level transcription level of pgsA led to 35.44% and 76.53% increase in γ-PGA yield (γ-PGA yield-to-biomass), respectively. Notably, the expression level of pgsC had the greatest influence (accounting for 68.24%) on γ-PGA synthesis, followed by pgsB. Next, genes encoding for PgsC from four different sources (Bacillus subtilis, Bacillus anthracis, Bacillus methylotrophicus, and Bacillus amyloliquefaciens) were tested in order to identify the influence of PgsC-encoding orthologues on γ-PGA production, but results showed that in all cases the synthesis of γ-PGA was significantly inhibited. Similarly, we also explored the influence of gene orthologues encoding for PgsB on γ-PGA production, and found that the titer increased to 17.14 ± 0.62 g/L from 8.24 ± 0.10 g/L when PgsB derived from B. methylotrophicus replaced PgsB alone in PgsBCA from B. licheniformis. The resulting strain was chosen for further optimization, and we achieved a γ-PGA titer of 38.26 g/L in a 5 L fermentor by optimizing dissolved oxygen level. Subsequently, by supplementing glucose, γ-PGA titer increased to 50.2 g/L at 48 h. To the best of our knowledge, this study achieved the highest titer for de novo production of γ-PGA from glucose, without addition of L-glutamic acid, resulting in a novel strategy for enhancing γ-PGA production.


Asunto(s)
Corynebacterium glutamicum , Fermentación , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Glutámico , Ácido Poliglutámico/genética , Ligasas/metabolismo , Glucosa/metabolismo
13.
BMC Surg ; 23(1): 319, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872521

RESUMEN

Cannulated screw fixation is essential in treating femoral neck fractures, and the widely used freehand technique has several limitations. Therefore, we designed a new laser-positioning and navigation system and compared its efficacy with that of the traditional freehand technique in the cannulated screw fixation of femoral neck fractures. This randomized controlled single-blind trial recruited patients with femoral neck fracture, who were treated using either the newly designed laser-navigation device or the freehand technique. In in-vitro experiments, using the femoral neck model, the laser group was better than the freehand group in terms of operation time (P = 0.0153) and radiation exposure time (P < 0.001). In in-vivo experiments, involving 30 patients (15 in each group), the laser group was better than the freehand group in terms of operation time (P < 0.001), radiation exposure time (P < 0.001), blood loss (P < 0.001) and first success rate (P = 0.03). There was no difference in visual analog scale score, Harris score, and fracture-healing time between the two groups. In conclusion, the novel laser-guiding navigation system resulted in shorter operation time, less radiation exposure, and higher first success rate compared with the freehand technique. Further qualified investigations with a larger number of patients and longer follow-up are required in the future.


Asunto(s)
Fracturas del Cuello Femoral , Cuello Femoral , Humanos , Cuello Femoral/cirugía , Método Simple Ciego , Fijación Interna de Fracturas/métodos , Tornillos Óseos , Fracturas del Cuello Femoral/cirugía , Resultado del Tratamiento , Estudios Retrospectivos
14.
Anal Chem ; 95(32): 11969-11977, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37524653

RESUMEN

Ribonuclease (RNA) modifications can alter cellular function and lead to differential immune responses by acting as discriminators between RNAs from different phyla. RNA glycosylation has recently been observed at the cell surface, and its dysregulation in disease may change RNA functions. However, determining which RNA substrates can be glycosylated remains to be explored. Here, we develop a solid-phase chemoenzymatic method (SPCgRNA) for targeting glycosylated RNAs, by which glycosylated RNA substrates can be specifically recognized. We found the differential N-glycosylation of small RNAs in hTERT-HPNE and MIA PaCa-2 cancer cells using SPCgRNA. RNA-Seq showed that the changes in glyco-miRNAs prepared from SPCgRNA were consistent with those of traditional methods. The KEGG signaling pathway analysis revealed that differential miRNA glycosylation can affect tumor cell proliferation and survival. Further studies found that NGI-1 significantly inhibited the proliferation, migration, and circulation of MIA PaCa-2 and promoted cell apoptosis. In addition, ß-1,4-galactosyltransferase 1 (B4GALT1) not only affected the expression level of glycosylated miRNAs hsa-miR-21-5p but also promoted cell apoptosis and inhibited the cell cycle possibly through the p53 signaling pathway, while B4GALT1 and p53 were also affected following the hsa-miR-21-5p increase. These results suggest that B4GALT1 may catalyze miRNAs glycosylation, which further promotes cancer cell progression.


Asunto(s)
ARN , Glicosilación , ARN/química , ARN/metabolismo , Oxidación-Reducción , Perfilación de la Expresión Génica , Humanos , Línea Celular Tumoral , Transducción de Señal
15.
Sheng Li Xue Bao ; 75(3): 339-350, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37340643

RESUMEN

This paper aimed to investigate the role and potential mechanism of p53 on primordial follicle activation. Firstly, the p53 mRNA expression in the ovary of neonatal mice at 3, 5, 7 and 9 days post-partum (dpp) and the subcellular localization of p53 were detected to confirm the expression pattern of p53. Secondly, 2 dpp and 3 dpp ovaries were cultured with p53 inhibitor Pifithrin-µ (PFT-µ, 5 µmol/L) or equal volume of dimethyl sulfoxide for 3 days. The function of p53 in primordial follicle activation was determined by hematoxylin staining and whole ovary follicle counting. The proliferation of cell was detected by immunohistochemistry. The relative mRNA levels and protein levels of the key molecules involved in the classical pathways associated with the growing follicles were examined by immunofluorescence staining, Western blot and real-time PCR, respectively. Finally, rapamycin (RAP) was used to intervene the mTOR signaling pathway, and ovaries were divided into four groups: Control, RAP (1 µmol/L), PFT-µ (5 µmol/L), PFT-µ (5 µmol/L) + RAP (1 µmol/L) groups. The number of follicles in each group was determined by hematoxylin staining and whole ovary follicle counting. The results showed that the expression of p53 mRNA was decreased with the activation of primordial follicles in physiological condition. p53 was expressed in granulosa cells and oocyte cytoplasm of the primordial follicles and growing follicles, and the expression of p53 in the primordial follicles was higher than that in the growing follicles. Inhibition of p53 promoted follicle activation and reduced the primordial follicle reserve. Inhibition of p53 promoted the proliferation of the granulosa cells and oocytes. The mRNA and protein expression levels of key molecules in the PI3K/AKT signaling pathway including AKT, PTEN, and FOXO3a were not significantly changed after PFT-µ treatment, while the expression of RPS6/p-RPS6, the downstream effectors of the mTOR signaling pathway, was upregulated. Inhibition of both p53 and mTOR blocked p53 inhibition-induced primordial follicle activation. Collectively, these findings suggest that p53 may inhibit primordial follicle activation through the mTOR signaling pathway to maintain the primordial follicle reserve.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Proteína p53 Supresora de Tumor , Femenino , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hematoxilina , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Sirolimus , ARN Mensajero
16.
Heliyon ; 9(5): e15757, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37159680

RESUMEN

Cholesterol gallstone disease (CGD) is associated with bile cholesterol supersaturation. The Niemann-Pick C1-like 1 (NPC1L1), the inhibitory target of ezetimibe (EZE), is a critical sterol transporter of cholesterol absorption. Intestinal NPC1L1 facilitates the absorption of cholesterol, whereas hepatic NPC1L1 promotes cholesterol uptake by hepatocytes and reduces bile cholesterol supersaturation. The potential of hepatic NPC1L1 to prevent CGD has yet to be established due to its absence in the mice model. In this study, we generated mice expressing hepatic NPC1L1 using adeno-associated virus (AAV) gene delivery. The biliary cholesterol saturations and gallstone formations were explored under chow diet and lithogenic diet (LD) with or without EZE treatment. The long-term (8-week) LD-fed AAV-mNPC1L1 mice exhibited no significant differences in biliary cholesterol saturation and gallstone formation compared to WT mice. EZE effectively prevented CGD in both WT and AAV-mNPC1L1 mice. Mechanistically, prolonged LD feeding induced the degradation of hepatic NPC1L1, whereas short-term (2-week) LD feeding preserved the expression of hepatic NPC1L1. In conclusion, our findings suggest that hepatic NPC1L1 is unable to prevent CGD, whereas EZE functions as an efficient bile cholesterol desaturator during CGD development.

17.
Acta Pharmacol Sin ; 44(9): 1920-1931, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37055530

RESUMEN

The cell cycle regulator cyclin D3 (CCND3) is highly expressed in multiple myeloma (MM) and it promotes MM cell proliferation. After a certain phase of cell cycle, CCND3 is rapidly degraded, which is essential for the strict control of MM cell cycle progress and proliferation. In the present study, we investigated the molecular mechanisms regulating CCND3 degradation in MM cells. By utilizing affinity purification-coupled tandem mass spectrometry, we identified the deubiquitinase USP10 interacting with CCND3 in human MM OPM2 and KMS11 cell lines. Furthermore, USP10 specifically prevented CCND3 from K48-linked polyubiquitination and proteasomal degradation, therefore enhancing its activity. We demonstrated that the N-terminal domain (aa. 1-205) of USP10 was dispensable for binding to and deubiquitinating CCND3. Although Thr283 was important for CCND3 activity, it was dispensable for CCND3 ubiquitination and stability modulated by USP10. By stabilizing CCND3, USP10 activated the CCND3/CDK4/6 signaling pathway, phosphorylated Rb, and upregulated CDK4, CDK6 and E2F-1 in OPM2 and KMS11 cells. Consistent with these findings, inhibition of USP10 by Spautin-1 resulted in accumulation of CCND3 with K48-linked polyubiquitination and degradation that synergized with Palbociclib, a CDK4/6 inhibitor, to induce MM cell apoptosis. In nude mice bearing myeloma xenografts with OPM2 and KMS11 cells, combined administration of Spautin-l and Palbociclib almost suppressed tumor growth within 30 days. This study thus identifies USP10 as the first deubiquitinase of CCND3 and also finds that targeting the USP10/CCND3/CDK4/6 axis may be a novel modality for the treatment of myeloma.


Asunto(s)
Mieloma Múltiple , Ratones , Animales , Humanos , Ciclina D3 , Mieloma Múltiple/metabolismo , Ratones Desnudos , Apoptosis , Enzimas Desubicuitinizantes , Línea Celular Tumoral , Ubiquitina Tiolesterasa/metabolismo
18.
Cell Death Differ ; 30(5): 1198-1210, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36813922

RESUMEN

Elevated levels of PDLIM3 expression are frequently detected in sonic hedgehog (SHH) group of medulloblastoma (MB). However, the possible role of PDLIM3 in MB tumorigenesis is still unknown. Here, we found that PDLIM3 expression is necessary for hedgehog (Hh) pathway activation in MB cells. PDLIM3 is present in primary cilia of MB cells and fibroblasts, and such cilia localization is mediated by the PDZ domain of PDLIM3 protein. Deletion of PDLIM3 significantly compromised cilia formation and interfered the Hh signaling transduction in MB cells, suggesting that PDLIM3 promotes the Hh signaling through supporting the ciliogenesis. PDLIM3 protein physically interacts with cholesterol, a critical molecule for cilia formation and hedgehog signaling. The disruption of cilia formation and Hh signaling in PDLIM3 null MB cells or fibroblasts, was significantly rescued by treatment with exogenous cholesterol, demonstrating that PDLIM3 facilitates the ciliogenesis through cholesterol provision. Finally, deletion of PDLIM3 in MB cells significantly inhibited their proliferation and repressed tumor growth, suggesting that PDLIM3 is necessary for MB tumorigenesis. Our studies elucidate the critical functions of PDLIM3 in the ciliogenesis and Hh signaling transduction in SHH-MB cells, supporting to utilize PDLIM3 as a molecular marker for defining SHH group of MB in clinics.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Meduloblastoma/patología , Cilios/metabolismo , Colesterol/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Carcinogénesis/patología , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo
19.
J Biol Chem ; 299(4): 103025, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805336

RESUMEN

Gastric cancer is one of the cancers with high morbidity and mortality worldwide. The aryl sulfonamide indisulam inhibits the proliferation of several types of cancer cells through its function as a molecular glue to promote the ubiquitination and degradation of RNA-binding motif protein 39 (RBM39). However, it is unknown whether and how indisulam regulates the migration of cancer cells. In this work, using label-free quantitative proteomics, we discover that indisulam significantly attenuates N-cadherin, a marker for epithelial to mesenchymal transition and migration of cancer cells. Our bioinformatics analysis and biochemical experiments reveal that indisulam promotes the interaction between the zinc finger E-box-binding homeobox 1 (ZEB1), a transcription factor of N-cadherin, and DCAF15, a substrate receptor of CRL4 E3 ubiquitin ligase, and enhances ZEB1 ubiquitination and proteasomal degradation. In addition, our cell line-based experiments demonstrate that indisulam inhibits the migration of gastric cancer cells in a ZEB1-dependent manner. Analyses of patient samples and datasets in public databases reveal that tumor tissues from patients with gastric cancer express high ZEB1 mRNA and this high expression reduces patient survival rate. Finally, we show that treatment of gastric tumor samples with indisulam significantly reduces ZEB1 protein levels. Therefore, this work discloses a new mechanism by which indisulam inhibits the migration of gastric cancer cells, indicating that indisulam exhibits different biological functions through distinct signaling molecules.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Ubiquitinación , Sulfonamidas/farmacología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Movimiento Celular , Cadherinas/genética , Cadherinas/metabolismo
20.
BMC Cancer ; 23(1): 162, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800936

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a common malignant tumor associated with poor prognosis. MicroRNAs (miRNAs) play crucial regulatory roles in the cancer development. However, the role of miRNAs in OSCC development and progression is not well understood. METHODS: We sought to establish a dynamic Chinese hamster OSCC animal model, construct miRNA differential expression profiles of its occurrence and development, predict its targets, and perform functional analysis and validation in vitro. RESULTS: Using expression and functional analyses, the key candidate miRNA (miR-181a-5p) was selected for further functional research, and the expression of miR-181a-5p in OSCC tissues and cell lines was detected. Subsequently, transfection technology and a nude mouse tumorigenic model were used to explore potential molecular mechanisms. miR-181a-5p was significantly downregulated in human OSCC specimens and cell lines, and decreased miR-181a-5p expression was observed in multiple stages of the Chinese hamster OSCC animal model. Moreover, upregulated miR-181a-5p significantly inhibited OSCC cell proliferation, colony formation, invasion, and migration; blocked the cell cycle; and promoted apoptosis. BCL2 was identified as a target of miR-181a-5p. BCL2 may interact with apoptosis- (BAX), invasion- and migration- (TIMP1, MMP2, and MMP9), and cell cycle-related genes (KI67, E2F1, CYCLIND1, and CDK6) to further regulate biological behavior. Tumor xenograft analysis indicated that tumor growth was significantly inhibited in the high miR-181a-5p expression group. CONCLUSION: Our findings indicate that miR-181a-5p can be used as a potential biomarker and provide a novel animal model for mechanistic research on oral cancer.


Asunto(s)
MicroARNs , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Cricetinae , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Cricetulus , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Boca/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA