Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Mol Biol ; 436(7): 168212, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481158

RESUMEN

The human methyltransferase MLL4 plays a critical role in embryogenesis and development, and aberrant activity of MLL4 is linked to neurodegenerative and developmental disorders and cancer. MLL4 contains the catalytic SET domain that catalyzes mono methylation of lysine 4 of histone H3 (H3K4me1) and seven plant homeodomain (PHD) fingers, six of which have not been structurally and functionally characterized. Here, we demonstrate that the triple PHD finger cassette of MLL4, harboring its fourth, fifth and sixth PHD fingers (MLL4PHD456) forms an integrated module, maintains the binding selectivity of the PHD6 finger toward acetylated lysine 16 of histone H4 (H4K16ac), and is capable of binding to DNA. Our findings highlight functional correlation between H4K16ac and H3K4me1, two major histone modifications that are recognized and written, respectively, by MLL4.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Dedos de Zinc PHD , Humanos , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Unión Proteica
2.
J Mol Biol ; 436(7): 168413, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135180

RESUMEN

KAT8 is an evolutionarily conserved lysine acetyltransferase that catalyzes histone acetylation at H4K16 or H4K5 and H4K8 through distinct protein complexes. It plays a pivotal role in male X chromosome dosage compensation in Drosophila and is implicated in the regulation of diverse cellular processes in mammals. Mutations and dysregulation of KAT8 have been reported in human neurodevelopmental disorders and various cancers. However, the precise mechanisms by which these mutations disrupt KAT8's normal function, leading to disease pathogenesis, remain largely unknown. In this study, we focus on a hotspot missense cancer mutation, the R98W point mutation within the Tudor-knot domain. Our study reveals that the R98W mutation leads to a reduction in global H4K16ac levels in cells and downregulates the expression of target genes. Mechanistically, we demonstrate that R98 is essential for KAT8-mediated acetylation of nucleosomal histones by modulating substrate accessibility.


Asunto(s)
Histona Acetiltransferasas , Histonas , Neoplasias , Nucleosomas , Dominio Tudor , Animales , Humanos , Masculino , Acetilación , Drosophila/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Neoplasias/genética , Mutación Missense , Nucleosomas/metabolismo , Dominio Tudor/genética , Línea Celular Tumoral
3.
Nat Commun ; 14(1): 5362, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660055

RESUMEN

The histone acetyltransferase p300/CBP is composed of several conserved domains, among which, the TAZ2 domain is known as a protein-protein interaction domain that binds to E1A and various transcription factors. Here we show that TAZ2 has a HAT autoinhibitory function. Truncating p300/CBP at TAZ2 leads to hyperactive HAT and elevated histone H3K27 and H3K18 acetylation in cells. Mechanistically, TAZ2 cooperates with other HAT neighboring domains to maintain the HAT active site in a 'closed' state. Truncating TAZ2 or binding of transcription factors to TAZ2 induces a conformational change that 'opens' the active site for substrate acetylation. Importantly, genetic mutations that lead to p300/CBP TAZ2 truncations are found in human cancers, and cells with TAZ2 truncations are vulnerable to histone deacetylase inhibitors. Our study reveals a function of the TAZ2 domain in HAT autoinhibitory regulation and provides a potential therapeutic strategy for the treatment of cancers harboring p300/CBP TAZ2 truncations.


Asunto(s)
Inhibidores de Histona Desacetilasas , Histonas , Humanos , Acetilación , Inhibidores de Histona Desacetilasas/farmacología , Inhibición Psicológica , Factores de Transcripción/genética
4.
J Med Chem ; 64(15): 10997-11013, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34279931

RESUMEN

Eleven-nineteen leukemia (ENL) protein is a histone acetylation reader essential for disease maintenance in acute leukemias, in particular, the mixed-lineage leukemia (MLL)-rearranged leukemia. In this study, we carried out high-throughput screening of a small-molecule library to identify inhibitors for the ENL YEATS domain. Structure-activity relationship studies of the hits and structure-based inhibitor design led to two compounds, 11 and 24, with IC50 values below 100 nM in inhibiting the ENL-acetyl-H3 interaction. Both compounds, and their precursor compound 7, displayed strong selectivity toward the ENL YEATS domain over all other human YEATS domains. Moreover, 7 exhibited on-target inhibition of ENL in cultured cells and a synergistic effect with the bromodomain and extraterminal domain inhibitor JQ1 in killing leukemia cells. Together, we have developed selective chemical probes for the ENL YEATS domain, providing the basis for further medicinal chemistry-based optimization to advance both basic and translational research of ENL.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Leucemia Mieloide Aguda/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Elongación Transcripcional/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ensayos Analíticos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Estructura Molecular , Dominios Proteicos/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Factores de Elongación Transcripcional/metabolismo
5.
J Bone Miner Res ; 36(10): 1931-1941, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34173271

RESUMEN

Bizarre parosteal osteochondromatous proliferation (BPOP), or Nora's lesion, is a rare benign osteochondromatous lesion. At present, the molecular etiology of BPOP remains unclear. JMJD3(KDM6B) is an H3K27me3 demethylase and counteracts polycomb-mediated transcription repression. Previously, Jmjd3 was shown to be critical for bone development and osteoarthritis. Here, we report that conditional deletion of Jmjd3 in chondrogenic cells unexpectedly resulted in BPOP-like lesion in mice. Biochemical investigations revealed that Jmjd3 inhibited BPOP-like lesion through p16Ink4a . Immunohistochemistry and RT-qPCR assays indicated JMJD3 and p16INK4A level were significantly reduced in human BPOP lesion compared with normal subjects. This was further confirmed by Jmjd3/Ink4a double-gene knockout mice experiments. Therefore, our results indicated the pathway of Jmjd3/p16Ink4a may be essential for the development of BPOP in human. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Neoplasias Óseas , Osteocondroma , Animales , Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Ratones , Osteocondroma/genética , Transducción de Señal
6.
Nat Commun ; 10(1): 2314, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127101

RESUMEN

Histone methyltransferase MLL4 is centrally involved in transcriptional regulation and is often mutated in human diseases, including cancer and developmental disorders. MLL4 contains a catalytic SET domain that mono-methylates histone H3K4 and seven PHD fingers of unclear function. Here, we identify the PHD6 finger of MLL4 (MLL4-PHD6) as a selective reader of the epigenetic modification H4K16ac. The solution NMR structure of MLL4-PHD6 in complex with a H4K16ac peptide along with binding and mutational analyses reveal unique mechanistic features underlying recognition of H4K16ac. Genomic studies show that one third of MLL4 chromatin binding sites overlap with H4K16ac-enriched regions in vivo and that MLL4 occupancy in a set of genomic targets depends on the acetyltransferase activity of MOF, a H4K16ac-specific acetyltransferase. The recognition of H4K16ac is conserved in the PHD7 finger of paralogous MLL3. Together, our findings reveal a previously uncharacterized acetyllysine reader and suggest that selective targeting of H4K16ac by MLL4 provides a direct functional link between MLL4, MOF and H4K16 acetylation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Dedos de Zinc PHD/fisiología , Acetilación , Animales , Sitios de Unión , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Técnicas de Inactivación de Genes , Células HEK293 , Histona Acetiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/química , Histonas/química , Humanos , Ratones Transgénicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
7.
Sci Rep ; 5: 13418, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26302868

RESUMEN

JMJD3 (KDM6B) is an H3K27me3 demethylases and emerges as an important player in developmental processes. Although some evidence indicated the involvement of JMJD3 in osteoblast differentiation in vitro, its role as a whole in osteoblast differentiation and bone formation in vivo remains unknown. Here we showed that homozygous deletion of Jmjd3 resulted in severe delay of osteoblast differentiation and bone ossification in mice. By biochemical and genetical methods, we demonstrated that JMJD3 mediated RUNX2 transcriptional activity and cooperated with RUNX2 to promote osteoblast differentiation and bone formation in vivo. These results strongly demonstrated that JMJD3 is required for osteoblast differentiation and bone formation in mice.


Asunto(s)
Diferenciación Celular/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Osteoblastos/citología , Osteoblastos/fisiología , Osteogénesis/fisiología , Animales , Células Cultivadas , Ratones , Ratones Noqueados
8.
J Mol Cell Biol ; 7(1): 23-34, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25587042

RESUMEN

JMJD3 (KDM6B) is an H3K27me3 demethylase and counteracts polycomb-mediated transcription repression. However, the function of JMJD3 in vivo is not well understood. Here we show that JMJD3 is highly expressed in cells of the chondrocyte lineage, especially in prehypertrophic and hypertrophic chondrocytes, during endochondral ossification. Homozygous deletion of Jmjd3 results in severely decreased proliferation and delayed hypertrophy of chondrocytes, and thereby marked retardation of endochondral ossification in mice. Genetically, JMJD3 associates with RUNX2 to promote proliferation and hypertrophy of chondrocytes. Biochemically, JMJD3 associates with and enhances RUNX2 activity by derepression of Runx2 and Ihh transcription through its H3K27me3 demethylase activity. These results demonstrate that JMJD3 is a key epigenetic regulator in the process of cartilage maturation during endochondral bone formation.


Asunto(s)
Condrocitos/metabolismo , Condrocitos/patología , Histona Demetilasas con Dominio de Jumonji/genética , Osteogénesis/genética , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Enanismo/genética , Enanismo/patología , Expresión Génica , Genotipo , Proteínas Hedgehog/genética , Humanos , Hipertrofia , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Fenotipo , Unión Proteica , Esqueleto , Transcripción Genética
9.
Biochem Biophys Res Commun ; 434(2): 241-4, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23542465

RESUMEN

DNA methylation plays an important role in many biological processes, including regulation of gene expression, maintenance of chromatin conformation and genomic stability. TET-family proteins convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which indicates that these enzymes may participate in DNA demethylation. The function of TET1 has not yet been well characterized in somatic cells. Here, we show that depletion of Tet1 in NIH3T3 cells inhibits cell growth. Furthermore, Tet1 knockdown blocks cyclin D1 accumulation in G1 phase, inhibits Rb phosphorylation and consequently delays entrance to G1/S phase. Taken together, this study demonstrates that Tet1 is required for cell proliferation and that this process is mediated through the Rb pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fase G1 , Proteínas Proto-Oncogénicas/metabolismo , Proteína de Retinoblastoma/metabolismo , Fase S , Animales , Western Blotting , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Ratones , Células 3T3 NIH , Fosforilación , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína de Retinoblastoma/genética , Transcripción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA