Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nanoscale ; 11(24): 11789-11807, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31184642

RESUMEN

Autophagy may represent a common cellular response to nanomaterials. In the present study, it was demonstrated that zinc oxide nanoparticle (ZON)-elicited autophagy contributes to tumor cell killing by accelerating the intracellular dissolution of ZONs and reactive oxygen species (ROS) generation. In particular, ZONs could promote Atg5-regulated autophagy flux without the impairment of autophagosome-lysosome fusion, which is responsible for ZON-elicited cell death in cancer cells. On the other hand, a further study revealed that a significant free zinc ion release in lysosomal acid compartments and sequential ROS generation in cells treated with ZONs were also associated with tumor cytotoxicity. Intriguingly, the colocalization between FITC-labeled ZONs and autophagic vacuoles indicates that the intracellular fate of ZONs is associated with autophagy. Moreover, the chemical or genetic inhibition of autophagy significantly reduced the level of intracellular zinc ion release and ROS generation separately, demonstrating that ZON-induced autophagy contributed toward cancer cell death by accelerating zinc ion release and sequentially increasing intracellular ROS generation. The modulation of autophagy holds great promise for improving the efficacy of tumor chemotherapy. Herein, ZONs were verified to enhance chemotherapy in both normal and drug-resistant cancer cells via synergistic autophagy elicitation. Further, this elicitation resulted in tremendous zinc ion release and ROS generation, which accounted for enhancing the tumor chemotherapy and overcoming drug resistance. No obvious changes in the expression level of P-gp proteins or the amount of doxorubicin uptake induced by ZONs in MCF-7/ADR cells also indicated that the increased zinc ion release and ROS generation via synergistic autophagy induction were responsible for overcoming the drug resistance. Finally, in vivo experiments involving animal models of 4T1 tumor cells revealed that the antitumor therapeutic effect of a combinatory administration obviously outperformed those of ZONs or free doxorubicin treatment alone at the same dose, which could be attenuated by the autophagy inhibitor wortmannin or ion-chelating agent EDTA. Taken together, our results reveal the mechanism wherein the autophagy induction by ZONs potentiates cancer cell death and a novel biological application for ZONs in adjunct chemotherapy in which autophagy reinforces zinc ion release and ROS generation.


Asunto(s)
Antineoplásicos , Muerte Celular Autofágica/efectos de los fármacos , Doxorrubicina , Resistencia a Antineoplásicos/efectos de los fármacos , Nanopartículas , Neoplasias Experimentales/tratamiento farmacológico , Óxido de Zinc , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Femenino , Células HeLa , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Especies Reactivas de Oxígeno/metabolismo , Óxido de Zinc/química , Óxido de Zinc/farmacología
3.
Biomed Res Int ; 2019: 6543230, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30723742

RESUMEN

Vasculogenic mimicry (VM) with the pattern of endothelial independent tubular structure formation lined by aggressive tumor cells mimics regular tumor blood vessels to ensure robust blood supply and correlates with the proliferation, invasion, metastasis, and poor prognosis of malignant tumors, which was demonstrated to be a major obstacle for resistance to antiangiogenesis therapy. Therefore, it is urgent to discover methods to abrogate the VM formation of tumors, which possesses important practical significance for improving tumor therapy. Brucine is a traditional medicinal herb extracted from seeds of Strychnos nux-vomica L. (Loganiaceae) exhibiting antitumor activity in a variety of cancer models. In the present study, the effect of brucine on vasculogenic mimicry and the related mechanism are to be investigated. We demonstrated that, in a triple-negative breast cancer cell line MDA-MB-231, brucine induced a dose-dependent inhibitory effect on cell proliferation along with apoptosis induction at higher concentrations. The further study showed that brucine inhibited cell migration and invasion with a dose-dependent manner. Our results for the first time indicated that brucine could disrupt F-actin cytoskeleton and microtubule structure, thereby impairing hallmarks of aggressive tumors, like migration, invasion, and holding a possibility of suppressing vasculogenic mimicry. Hence, the inhibitory effect of brucine on vasculogenic mimicry was further verified. The results illustrated that brucine significantly suppressed vasculogenic mimicry tube formation with a dose-dependent effect indicated by the change of the number of tubules, intersections, and mean length of tubules. The in-depth molecular mechanism of vasculogenic mimicry suppression induced by brucine was finally suggested. It was demonstrated that brucine inhibited vasculogenic mimicry which might be through the downregulation of erythropoietin-producing hepatocellular carcinoma-A2 and matrix metalloproteinase-2 and metalloproteinase-9.


Asunto(s)
Neovascularización Patológica/tratamiento farmacológico , Estricnina/análogos & derivados , Strychnos nux-vomica/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Estricnina/química , Estricnina/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA