Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ultrason Sonochem ; 100: 106617, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37769588

RESUMEN

The rapid spread and uncontrollable evolution of antibiotic-resistant bacteria have already become urgent global to treat bacterial infections. Sonodynamic therapy (SDT), a noninvasive and effective therapeutic strategy, has broadened the way toward dealing with antibiotic-resistant bacteria and biofilms, which base on ultrasound (US) with sonosensitizer. Sonosensitizer, based on small organic molecules or inorganic nanoparticles, is essential to the SDT process. Thus, it is meaningful to design a sonosensitizer-loaded nanoplatform and synthesize the nanoplatform with an efficient SDT effect. In this review, we initially summarize the probable SDT-based antibacterial mechanisms and systematically discuss the current advancement in different SDT-based nanoplatform (including nanoplatform for organic small-molecule sonosensitizer delivery and nanoplatform as sonosensitizer) for bacterial infection therapy. In addition, the biomedical applications of SDT-involved multifunctional nanoplatforms are also discussed. We believe the innovative SDT-based nanoplatforms would become a highly efficient next-generation noninvasive therapeutic tool for combating bacterial infection.


Asunto(s)
Infecciones Bacterianas , Nanopartículas , Terapia por Ultrasonido , Humanos , Línea Celular Tumoral , Infecciones Bacterianas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Especies Reactivas de Oxígeno
2.
Int J Pharm ; 629: 122348, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36336204

RESUMEN

Indocyanine green (ICG), a water-soluble near-infrared (NIR) photosensitizer, has been enormously regarded in tumor diagnosis and phototherapy. Although tremendous progress in establishing the nanocarrier-based delivery systems has been explored, several limitations of low ICG encapsulation and sophisticated fabrication process remain significant challenges in producing nanoplatforms, limiting the theranostic outcomes of ICG. According to the unique advantages of the supercritical antisolvent (SAS) process and solution casting method, a novel combination approach to obtain the ICG-loaded nanoparticles (ICG-PLO NPs) is demonstrated, in which SAS assisted-ICG nanoparticles (ICG NPs) are coated with polypeptide poly-l-ornithine (PLO) using solution casting approach. This unique nanoplatform with ultra-high drug encapsulation efficiency remarkably improved the aqueous and photothermal stability of ICG. Notably, the coating of PLO could improve the internalization level in cells and anticancer effect in vivo, comprehensively augmenting the cancer phototherapy effect of ICG. Together, the findings of novel particle formation by integrated strategy would certainly broaden the applications of supercritical fluid (SCF) technology, potentiating the design of nano-formulations of ICG for clinical translation.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Verde de Indocianina , Fototerapia , Nanopartículas/uso terapéutico , Polímeros/uso terapéutico , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
3.
Regen Biomater ; 9: rbac080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330352

RESUMEN

Aripiprazole (ARI), a second-generation atypical antipsychotic drug approved for schizophrenia treatment, shows good efficacy against depression. However, the poorly aqueous solubility of ARI leads to low bioavailability and increased dose-related side effects, seriously limiting its application in pharmaceutics. Herein, we demonstrated the fabrication of ARI and poly (methyl vinyl ether-co-maleic anhydride) (PVMMA) composite nanoparticles (PA NPs) using the supercritical antisolvent (SAS) process for enhancing its water-solubility and curative anti-depressant effects. Initially, the optimal experimental conditions (ARI/PVMMA mass ratio of 1:6, pressure of 10 MPa, and solution flow rate of 0.75 ml min-1) were determined by a 23 factorial experimental design, resulting in the PA NPs with an excellent particle morphology. In vitro cell experiments showed that PA NPs significantly inhibited the inflammatory response caused by the microglia activation induced by lipopolysaccharide (LPS). Similarly, mice behavioral tests demonstrated that PA NPs significantly improved LPS-induced depression-like behavior. Importantly, compared with free ARI, the LPS-induced activation of microglia in the mouse brain and the expression of inflammatory factors in serum were significantly reduced after treatment with PA NPs. Together, the innovative PA NPs designed by SAS process might provide a candidate for developing new ARI-based nano-formulations.

4.
ACS Biomater Sci Eng ; 7(3): 939-962, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33539071

RESUMEN

Indocyanine green (ICG), a near-infrared (NIR) agent with an excellent imaging performance, has captivated enormous interest from researchers owing to its excellent therapeutic and imaging abilities. Although various nanoplatforms-based drug delivery systems (DDS) with the ability to overcome the clinical limitations of ICG has been reported, ICG-medicated conventional cancer diagnosis and photorelated therapies still lack in exhibiting the therapeutic efficacy, resulting in incomplete or partly tumor elimination. In the view of addressing these concerns, various DDSs have been engineered for the efficient codelivery of combined therapeutic agents with ICG, aiming to achieve promising therapeutic results due to multifunctional imaging-guided synergistic antitumor effects. In this article, we will systematically review currently available nanoplatforms based on polymers, inorganic, proteins, and metal-organic frameworks (MOFs), among others, for codelivery of ICG along with other therapeutic agents, providing a foundation for future clinical development of ICG. In addition, codelivery systems for ICG and different mechanism-based therapeutic agents will be illustrated. In summary, we conclude the review with the challenges and perspectives of ICG-based versatile nanoplatforms in detail.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Humanos , Verde de Indocianina , Polímeros
5.
Nanomaterials (Basel) ; 10(2)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070047

RESUMEN

Due to its hydrophobicity, fisetin (FIS) often suffers from several limitations in terms of its applicability during the fabrication of pharmaceutical formulations. To overcome this intrinsic limitation of hydrophobicity, we demonstrate here the generation of poly (vinyl pyrrolidone) (PVP)-encapsulated FIS nanoparticles (FIS-PVP NPs) utilizing a supercritical antisolvent (SAS) method to enhance its aqueous solubility and substantial therapeutic effects. In this context, the effects of various processing and formulation parameters, including the solvent/antisolvent ratio, drug/polymer (FIS/PVP) mass ratio, and solution flow rate, on the eventual particle size as well as on distribution were investigated using a 23 factorial experimental design. Notably, the FIS/PVP mass ratio significantly affected the morphological attributes of the resultant particles. Initially, the designed constructs were characterized systematically using various techniques (e.g., chemical functionalities were examined with Fourier-transform infrared (FTIR) spectroscopy, and physical states were examined with X-ray diffraction analysis (XRD) and differential scanning calorimetry (DSC) techniques). In addition, drug release as well as cytotoxicity evaluations in vitro indicated that the nanosized polymer-coated particles showed augmented performance efficiency compared to the free drug, which was attributable to the improvement in the dissolution rate of the FIS-PVP NPs due to their small size, facilitating a higher surface area over the raw form of FIS. Our findings show that the designed SAS process-assisted nanoconstructs with augmented bioavailability, have great potential for applications in pharmaceutics.

6.
Environ Pollut ; 259: 113881, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31952103

RESUMEN

Coal-Gas replacement project has been implemented to decrease haze pollution in China in recent years. Airborne arsenic (As) mostly originates from coal burning processes. It is noteworthy to compare the distribution of arsenic fraction in PM2.5 before and after coal-gas replacement. Eighty PM2.5 samples were collected in Baoding in December 2016 (coal dominated year) and December 2017 (gas dominated year) at different functional areas including residential area (RA), industrial area (IA), suburb (SB), roadside (ST) and Botanical Garden Park (BG). The fraction, bioavailability and health risk of As in the PM2.5 samples were investigated and compared between these two years. Arsenic was mainly distributed in the non-specifically sorbed fraction (F1) and the residual fraction (F5). However, the proportion of F1 to the total As in 2017 was higher than that in 2016, while the proportion of As in the amorphous and poorly-crystalline hydrous oxides of Fe and Al fraction (F3) in 2017 was lower. The distributions of fraction and bioavailability showed temporal and spatial characteristics. The total concentration and bioavailability of As in SB and IA were significantly higher than those in RA, ST and BG. The BF (Bioavailability Factor) values of As ranged from 0.30 to 0.61. Health risk assessment indicated that the hazard quotient (HQ) and carcinogenic risk (CR) of As in PM2.5 significantly decreased after coal-gas replacement.


Asunto(s)
Contaminantes Atmosféricos , Arsénico , Carbón Mineral , Monitoreo del Ambiente , Gas Natural , Material Particulado , Contaminantes Atmosféricos/análisis , Arsénico/análisis , China , Carbón Mineral/análisis , Gas Natural/análisis , Material Particulado/química , Medición de Riesgo
7.
Environ Monit Assess ; 191(8): 528, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31367959

RESUMEN

The distribution and bioavailability of arsenic (As) in indoor/outdoor total suspended particulates (TSP), inhalable particulate matters (PM10), and fine particulate matters (PM2.5) in Baoding, China were investigated. The average I/O ratios for TSP, PM10, and PM2.5 were 0.52, 0.66, and 0.96, respectively. There was no significant correlation between indoor/outdoor TSP, PM10, and PM2.5. The indoor/outdoor concentrations of As surpassed the limited value of As. I/O ratios of arsenic in TSP, PM10, and PM2.5 were 0.52, 0.58, and 0.55, respectively. The contents of arsenic in different fractions were mainly affected by the total concentrations of arsenic in particulate matters (PM) rather than the particle sizes for TSP and PM10. Arsenic was mainly in non-specifically sorbed fraction (F1) in both indoor and outdoor PM2.5. The evaluated carcinogenic risk (CR) was within the safe level. The bioavailability of As increased with particle size decreasing for both indoor and outdoor PM. The potential bioavailability of As in outdoor particles was higher than that of indoor particles with the same size, especially PM2.5.


Asunto(s)
Contaminantes Atmosféricos/análisis , Arsénico/análisis , Material Particulado/química , Contaminantes Atmosféricos/química , Contaminación del Aire Interior/análisis , Arsénico/química , China , Monitoreo del Ambiente , Humanos , Tamaño de la Partícula , Material Particulado/análisis
8.
Adv Healthc Mater ; 8(12): e1800910, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30284409

RESUMEN

Pulmonary delivery of drugs has attracted increasing attention in healthcare, as the lungs are an easily accessible site for noninvasive systemic delivery of drugs. Although pulmonary inhalation of porous microparticles has been shown to sustain drug delivery, there are limited reports on efficient delivery of insulin and inhalation therapy of diabetes based on supercritical carbon dioxide (SC-CO2 ) technology. Herein, this study reports the fabrication of insulin-loaded poly-l-lactide porous microspheres (INS-PLLA PMs) by using the SC-CO2 technology, and their use as an inhalation delivery system potentially for diabetes therapy. Biocompatibility and delivery efficiency of the PLLA PMs in the lungs are investigated. The PLLA PMs show negligible toxicity to lung-derived cells, resulting in no significant reduction in cell viability, as well as levels of various inflammatory mediators such as interleukin (IL)-6, IL-8, and tumor necrosis factor-α, compared with the negative control group. INS-PLLA PMs are further efficiently deposited in the trachea and the bronchi of superior lobes of the lungs, which exhibit pronounced hypoglycemic activity in induced diabetic rats. Together, the results demonstrate that the INS-PLLA PMs have a strong potential as an effective strategy for inhalation treatment of diabetes.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Insulina/administración & dosificación , Insulina/uso terapéutico , Microesferas , Células A549 , Administración por Inhalación , Fosfatasa Alcalina/metabolismo , Animales , Dióxido de Carbono/química , Precipitación Química , Diabetes Mellitus Experimental/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Pulmón/metabolismo , Masculino , Poliésteres/química , Porosidad , Ratas Sprague-Dawley , Solventes/química , Distribución Tisular
9.
Int J Nanomedicine ; 13: 4685-4698, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154654

RESUMEN

BACKGROUND: In recent times, the co-delivery therapeutics have garnered enormous interest from researchers in the treatment of cancers with multidrug resistance (MDR) due to their efficient delivery of multiple agents, which result in synergistic effects and capable of overcoming all the obstacles of MDR in cancer. However, an efficient delivery platform is required for the conveyance of diverse agents that can successfully devastate MDR in cancer. METHODS: Initially, short-interfering RNA-loaded chitosan (siRNA-CS) nanoparticles were synthesized using the ionic gelation method. Further, the siRNA-CS nanoparticles and doxorubicin hydrochloride (DOX) were co-loaded in poly-L-lactide porous microparticles (PLLA PMs) (nano-embedded porous microparticles, [NEPMs]) by the supercritical anti-solvent (SAS) process. RESULTS AND DISCUSSION: The NEPM formulation exhibited an excellent aerodynamic performance and sustained release of DOX, which displayed higher anticancer efficacy in drug-resistant cells (human small cell lung cancer, H69AR cell line) than those treated with either free DOX and DOX-PLLA PMs due to the siRNA from CS nanoparticles silenced the MDR gene to DOX therapy. CONCLUSION: This eco-friendly process provides a convenient way to fabricate such innovative NEPMs co-loaded with a chemotherapeutic agent and a gene, which can devastate MDR in cancer through the co-delivery system.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Quitosano/química , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Portadores de Fármacos/química , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Nanopartículas/química , ARN Interferente Pequeño/genética , Células Tumorales Cultivadas
10.
ACS Biomater Sci Eng ; 3(10): 2431-2442, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33445301

RESUMEN

Recently, multidrug resistance (MDR) has become a major clinical chemotherapeutic burden that robustly diminishes the intracellular drug levels through various mechanisms. To overcome the doxorubicin (Dox) resistance in tumor cells, we designed a hierarchical nanohybrid system possessing copper-substituted mesoporous silica nanoparticles (Cu-MSNs). Further, Dox was conjugated to copper metal in the Cu-MSNs framework through a pH-sensitive coordination link, which is acutely sensitive to the tumor acidic environment (pH 5.0-6.0). In the end, the nanocarrier was coated with D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS), a P-gp inhibitor-entrenched compact liposome net for obstructing the drug efflux pump. Copper ions in the framework synergize the antitumor activity of Dox by enhancing the intracellular reactive oxygen species (ROS) levels through a Fenton-like reaction-mediated conversion of hydrogen peroxide. Furthermore, intracellularly generated ROS triggered the apoptosis by reducing the cellular as well as mitochondrial membrane integrity in MDR cells, which was confirmed by the mitochondrial membrane potential (MMP) measurement. The advancement of the design and critical improvement of cytotoxic properties through free radical attack demonstrate that the proposed hierarchical design can devastate the MDR for efficient cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA