Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Geochem Health ; 46(8): 275, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958819

RESUMEN

Soil organic matter plays an important role in cadmium adsorption and immobilization. Since different organic matter components affect cadmium adsorption processes differently, selecting the right organic substrate and knowing how to apply it could improve cadmium remediation. This study compares the effects of two contrasting organic molecules; chitosan and citric acid, on cadmium adsorption and speciation in acidic Ultisol. The adsorption of chitosan to Ultisol significantly increased the soil positive charge while adsorption of citric acid increased the soil negative charge. At pH 5.0, the maximum amount of cadmium adsorbed in excess chitosan was 341% greater than that in excess citric acid. About 73-89% and 60-62% of adsorbed cadmium were bound to Fe/Mn oxides and organic matter/sulfide at pH 4.0 while this fraction was 77-100% and 57-58% for citric acid and chitosan at pH 5.0, respectively. This decrease in the complexing ability of chitosan was related to the destabilizing effect of high pH on chitosan's structure. Also, the sequence through which chitosan, citric acid, and cadmium were added into the adsorption system influenced the adsorption profile and this was different along a pH gradient. Specifically, adding chitosan and cadmium together increased adsorption compared to when chitosan was pre-adsorbed within pH 3.0-6.5. However, for citric acid, the addition sequence had no significant effect on cadmium adsorption between pH 3.0-4.0 compared to pH 6.5 and 7.5, with excess citric acid generally inhibiting adsorption. Given that the action of citric acid is short-lived in soil, chitosan could be a good soil amendment material for immobilizing cadmium.


Asunto(s)
Cadmio , Quitosano , Ácido Cítrico , Contaminantes del Suelo , Suelo , Quitosano/química , Ácido Cítrico/química , Cadmio/química , Adsorción , Contaminantes del Suelo/química , Suelo/química , Concentración de Iones de Hidrógeno , Restauración y Remediación Ambiental/métodos
2.
Chemosphere ; 313: 137570, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36563731

RESUMEN

Phyllosilicate minerals are the important components in soils and an important source of activated aluminum (Al) during soil acidification. However, the mechanisms for Al activation in phyllosilicate minerals were not understood well. In this paper, the effect of phyllosilicate surface hydroxyl groups on Al activation during acidification was studied after the minerals were modified with inorganic and organic materials. After modification of kaolinite, montmorillonite, and illite with fulvic acid (FA-), iron oxide (Fe-), Fe combined with FA (Fe-FA-), and siloxane (Si-O-), the interlayer spaces were altered. For instance, when modified with Fe, Fe entered the interlayer spaces of kaolinite and montmorillonite and changed the interlayer spaces of both minerals but did not affect that of illite. Also, the other modification methods had significant effects on the interlayer space of montmorillonite but not on kaolinite and illite. It was observed that all the modification strategies inhibited Al activation during acidification by reducing the number of hydroxyl groups on the mineral surfaces and inhibiting protonation reactions between H+ and hydroxyl groups. Nevertheless, the inhibition effect varies with the type of phyllosilicate mineral. For kaolinite (Kao), the inhibition effect of the different modification methods on Al activation during acidification followed: Fe-FA-Kao > Fe-Kao > Si-O-Kao > FA-Kao. Additionally, for montmorillonite (Mon), the inhibition effect was in the order: Si-O-Mon > Fe-Mon > Fe-FA-Mon > FA-Mon, while for illite, it was: Fe-illite > Si-O-illite ≈ Fe-FA-illite > FA-illite. Thus, the hydroxyl groups on the surfaces and edges of phyllosilicate minerals play an important role in the activation of Al from the mineral structure. Also, the protonation of hydroxyl groups may be the first step during Al activation in these minerals. The results of this study can serve as a reference for the development of new technologies to inhibit soil acidification and Al activation.


Asunto(s)
Aluminio , Caolín , Caolín/química , Arcilla , Bentonita/química , Silicatos de Aluminio/química , Adsorción , Minerales/química , Suelo , Concentración de Iones de Hidrógeno
3.
Environ Pollut ; 313: 120175, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36115484

RESUMEN

To develop more green, practical and efficient biochar amendments for acidic soils, chitosan-modified biochar (CRB) and alginate-modified biochar (ARB) were prepared, and their effects on promoting soil pH buffering capacity (pHBC) and immobilizing cadmium (Cd) in the paddy soils were investigated through indoor incubation experiments. The results of Fourier transform infrared spectroscopy and Boehm titration indicated that the introduction of chitosan and sodium alginate effectively amplified the functional groups of the biochar, and improved acid buffering capacity of the biochar. Since there was a plateau region between pH 4.5 and 5.5 in acid-base titration curve of the CRB, adding this biochar to acidic paddy soils apparently improved the pHBC and enhanced the acidification resistance of the paddy soils. The addition of ARB enhanced the reduction reactions during submerging and weakened the oxidation reactions during draining, thus retarded the decline of paddy soil pH during drainage. Furthermore, the pH of the paddy soils with ARB addition was higher at the end of draining, which reduced the activity of soil Cd. Considering the environmental sustainability of chitosan and sodium alginate and convenience of preparation method, biochars modified with these two materials provided alternatives for acidic paddy soil amelioration and heavy metal immobilization. However, the additional experiments should be conducted under field conditions to confirm practical application effects in the future.


Asunto(s)
Quitosano , Metales Pesados , Oryza , Contaminantes del Suelo , Ácidos/química , Alginatos , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Cadmio/análisis , Carbón Orgánico/química , Concentración de Iones de Hidrógeno , Oryza/química , Suelo/química , Contaminantes del Suelo/análisis
4.
Environ Sci Pollut Res Int ; 27(24): 30178-30189, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32451890

RESUMEN

The toxicity of aluminum (Al) to plants in acidic soils depends on the Al species in soil solution. The effects of crop straw biochars on Al species in the soil solution, and canola growth and yield were investigated in this study. In a long-term field experiment, there were four treatments, which were a control, rice straw biochar (RSB), canola straw biochar (CSB), and peanut straw biochar (PSB). The soil solution was collected in situ, the Al species were identified, and the relationships between the concentration of phytotoxic Al and canola growth and yield were evaluated. The results showed that applying the three biochars resulted in significant decreases in the concentrations of total Al, monomeric Al, and monomeric inorganic Al (P < 0.05). The Al3+, Al-OH, and Al-SO4 proportions of the total Al also decreased. The abilities of the different biochars to reduce dissolved Al followed the order PSB > CSB > RSB, which was consistent with the alkalinity of these biochars. Application of the biochars significantly decreased the concentration of phytotoxic Al (Al3+ + Al-OH), which improved canola growth and increased the canola seed and straw yields. Plant height, leaf number per plant, area per leaf, chlorophyll content, and canola yield were negatively correlated with the Al3+ + Al-OH concentrations. Therefore, the results showed that crop straw biochars can be used to ameliorate soil acidity and alleviate Al toxicity in acidic soils, and that peanut straw biochar is the best amendment for acidic soils.


Asunto(s)
Brassica napus , Oryza , Contaminantes del Suelo/análisis , Aluminio , Carbón Orgánico , Suelo
5.
Ecotoxicol Environ Saf ; 126: 256-263, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26773835

RESUMEN

Phytoremediation potential of plants can be enhanced in association with microbes. Further, many plant growth-promoting rhizobacteria can improve growth under stress. The present study was conducted to investigate the effect of Pseudomonas putida (P. putida) on nickel (Ni) uptake and on growth of Eruca sativa (E. sativa). Three different levels of Ni (low; 150 ug/g, medium; 250 ug/g and high; 500 ug/g) were applied to the soil containing E. sativa seedlings, with or without P. putida. Ni-toxicity was measured by metamorphic parameters including shoot length, root length, biomass, chlorophyll and proline and Ni contents. Inoculation with P. putida increased 34% and 41% in root and shoot length and 38% and 24% in fresh, dry weight respectively, as compared to non-inoculated plants. Similarly, Ni uptake increased by up to 46% following P. putida inoculation as compared to non-inoculated plants. Indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity in the growing media enhanced growth and Ni uptake in E. sativa. The present results offer insight on Plant Growth Promoting Rhizobacteria (PGPR), such as P. putida, for the potential to enhance the plant growth by inhibiting the adverse effects of Ni in E. sativa.


Asunto(s)
Brassicaceae/metabolismo , Níquel/metabolismo , Pseudomonas putida/fisiología , Biodegradación Ambiental , Brassicaceae/efectos de los fármacos , Brassicaceae/crecimiento & desarrollo , Brassicaceae/microbiología , Níquel/toxicidad , Raíces de Plantas/crecimiento & desarrollo , Plantones/metabolismo , Suelo/química , Estrés Fisiológico
6.
J Environ Sci (China) ; 16(1): 5-8, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14971442

RESUMEN

Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was notcorrelated with pKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.


Asunto(s)
Ácidos/química , Fósforo/química , Fenómenos Geológicos , Geología , Concentración de Iones de Hidrógeno , Hierro/química , Peso Molecular , Raíces de Plantas , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA