Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Cell Death Dis ; 15(5): 318, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710703

RESUMEN

Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Factor de Transcripción Activador 3 , Neoplasias Encefálicas , Resistencia a Antineoplásicos , Exosomas , Glioblastoma , Células Madre Neoplásicas , Temozolomida , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Exosomas/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Animales , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos
2.
Inflammopharmacology ; 32(3): 1659-1704, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520574

RESUMEN

Curcumol (Cur), a guaiane-type sesquiterpenoid hemiketal, is an important and representative bioactive component extracted from the essential oil of the rhizomes of Curcumae rhizoma which is also known as "Ezhu" in traditional Chinese medicine. Recently, Cur has received considerable attention from the research community due to its favorable pharmacological activities, including anti-cancer, hepatoprotective, anti-inflammatory, anti-viral, anti-convulsant, and other activities, and has also exerted therapeutic effect on various cancers, liver diseases, inflammatory diseases, and infectious diseases. Pharmacokinetic studies have shown that Cur is rapidly distributed in almost all organs of rats after intragastric administration with high concentrations in the small intestine and colon. Several studies focusing on structure-activity relationship (SAR) of Cur have shown that some Cur derivatives, chemically modified at C-8 or C-14, exhibited more potent anti-cancer activity and lower toxicity than Cur itself. This review aims to comprehensively summarize the latest advances in the pharmacological and pharmacokinetic properties of Cur in the last decade with a focus on its anti-cancer and hepatoprotective potentials, as well as the research progress in drug delivery system and potential applications of Cur to date, to provide researchers with the latest information, to highlighted the limitations of relevant research at the current stage and the aspects that should be addressed in future research. Our results indicate that Cur and its derivatives could serve as potential novel agents for the treatment of a variety of diseases, particularly cancer and liver diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos , Sesquiterpenos , Animales , Sesquiterpenos/farmacología , Sesquiterpenos/farmacocinética , Sesquiterpenos/administración & dosificación , Humanos , Relación Estructura-Actividad , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación
3.
Cell Death Dis ; 15(1): 45, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218875

RESUMEN

Interferon-induced transmembrane protein 3 (IFITM3) has been previously verified to be an endosomal protein that prevents viral infection. Recent findings suggested IFITM3 as a key factor in tumor invasion and progression. To clarify the role and molecular mechanism of IFITM3 in Glioblastoma multiforme (GBM) progression, we investigated the expression of IFITM3 in glioma datasets culled from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). Primary GBM stem cells (GSCs) were cultured and identified in vitro. Loss-of-function and gain-of-function experiments were established by using shRNAs and lentiviral vectors targeting IFITM3. Co-culture system of GSCs and vascular endothelial cells was constructed in a Transwell chamber. Tube formation and spheroid-based angiogenesis assays were performed to determine the angiogenic capacity of endothelial cells. Results revealed that IFITM3 is elevated in GBM samples and predictive of adverse outcome. Mechanistically, GSCs-derived IFITM3 causes activation of Jak2/STAT3 signaling and leads to robust secretion of bFGF into tumor environment, which eventually results in enhanced angiogenesis. Taken together, these evidence indicated IFITM3 as an essential factor in GBM angiogenesis. Our findings provide a new insight into mechanism by which IFITM3 modulates GBM angiogenesis.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Células Endoteliales/metabolismo , Angiogénesis , Glioma/genética , Transducción de Señal , Células Madre/metabolismo , Neoplasias Encefálicas/patología , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
4.
Acad Radiol ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38228455

RESUMEN

RATIONALE AND OBJECTIVES: To investigate the effectiveness of combining split diffusion tensor imaging (DTI) measurements with split renal parenchymal volume (RPV) for assessing split renal functional impairment in patients with lupus nephritis (LN). MATERIALS AND METHODS: Seventy-four participants [48 LN patients and 26 healthy volunteers (HV)] were included in the study. All participant underwent conventional MR and DTI (b = 0, 400, and 600 s/mm2) examinations using a 3.0 T MRI scanner to determine the split renal DTI measurements and split RPV. In LN patients, renography glomerular filtration rate (rGFR) was measured using 99mTc-DTPA scintigraphy based on Gates' method, serving as the reference standard to categorize all split kidneys of LN patients into LN with mild impairment (LNm, n = 65 kidneys) and LN with moderate to severe (LNms, n = 31 kidneys) groups according to the threshold of 30 ml/min in spilt rGFR. All statistical analyses were performed using SPSS 25.0 and MedCalc 20.0 software packages. RESULTS: Only split medullary fractional anisotropy (FA) and the product of split medullary FA and RPV could distinguish pairwise subgroups among the HV and each LN subgroup (all p < 0.05). ROC curve analysis demonstrated that split medullary FA (AUC = 0.866) significantly outperformed other parameters in differentiating HV from LNm groups, while the product of split medullary FA and split RPV was superior in distinguishing LNm and LNms groups (AUC = 0.793) than other parameters. The combination of split medullary FA and split RPV showed best correlation with split rGFR (r = 0.534, p < 0.001). CONCLUSION: Split medullary FA, and its combination with split RPV, are valuable biomarkers for detecting early functional changes in renal alterations and predicting disease progression in patients with LN.

5.
Int J Sports Med ; 45(1): 33-40, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37956874

RESUMEN

Cardiac hypertrophy (CH) is an early marker in the clinical course of heart failure. Circular RNAs (circRNAs) play important roles in human disease. However, the role of circ_Larp4b in myocardial hypertrophy has not been studied. Angiotensin II (Ang II) treated HL-1 cells to induce a CH cell model. Quantitative real-time polymerase chain reaction was used to detect the expression of circ_Larp4b, microRNA-298-5p, and myocyte enhancer factor 2 (Mef2c). Western blot detected the protein level of alpha-actinin-2 (ACTN2), beta-myosin heavy chain (ß-MHC), atrial natriuretic peptide (ANP), and Mef2c. The relationship between miR-298-5p and circ_Larp4b or Mef2c was verified by dual-luciferase reporter assay and RNA pull-down assay. Circ_Larp4b and Mef2c were upregulated in HL-1 cells treated with Ang II. Moreover, circ_Larp4b down-regulation regulated the progress of CH induced by Ang II. MiR-298-5p was a target of circ_Larp4b, and Mef2c was a target of miR-298-5p. Overexpressed Mef2c reversed the cell size inhibited by miR-298-5p in Ang II-induced HL-1 cells. Circ_Larp4b regulated CH progress by regulating miR-298-5p/Mef2c axis.


Asunto(s)
MicroARNs , Hormonas Peptídicas , Humanos , Angiotensina II/farmacología , ARN Circular/genética , Factores de Transcripción MEF2/genética , Cardiomegalia/genética , MicroARNs/genética , Proliferación Celular
6.
Biomed Pharmacother ; 166: 115336, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37591126

RESUMEN

Lung cancer (LC) is one of the leading causes of cancer-related deaths worldwide, with a significant morbidity and mortality rate, endangering human life and health. The introduction of immunotherapies has significantly altered existing cancer treatment strategies and is expected to improve immune responses, objective response rates, and survival rates. However, a better understanding of the complex immunological networks of LC is required to improve immunotherapy efficacy further. Tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) are significantly expressed by LC cells, which activate dendritic cells, initiate antigen presentation, and activate lymphocytes to exert antitumor activity. However, as tumor cells combat the immune system, an immunosuppressive microenvironment forms, enabling the enactment of a series of immunological escape mechanisms, including the recruitment of immunosuppressive cells and induction of T cell exhaustion to decrease the antitumor immune response. In addition to the direct effect of LC cells on immune cell function, the secreting various cytokines, chemokines, and exosomes, changes in the intratumoral microbiome and the function of cancer-associated fibroblasts and endothelial cells contribute to LC cell immune escape. Accordingly, combining various immunotherapies with other therapies can elicit synergistic effects based on the complex immune network, improving immunotherapy efficacy through multi-target action on the tumor microenvironment (TME). Hence, this review provides guidance for understanding the complex immune network in the TME and designing novel and effective immunotherapy strategies for LC.


Asunto(s)
Células Endoteliales , Neoplasias Pulmonares , Humanos , Microambiente Tumoral , Neoplasias Pulmonares/terapia , Inmunoterapia , Complejo Antígeno-Anticuerpo
7.
Methods Mol Biol ; 2689: 169-177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37430054

RESUMEN

Droplet digital polymerase chain reaction (ddPCR) is a new quantitative PCR method based on water-oil emulsion droplet technology. ddPCR enables highly sensitive and accurate quantification of nucleic acid molecules, especially when their copy numbers are low. In ddPCR, a sample is fractionated into ~20,000 droplets, and every nanoliter-sized droplet undergoes PCR amplification of the target molecule. The fluorescence signals of droplets are then recorded by an automated droplet reader. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitously expressed in animals and plants. CircRNAs are promising as biomarkers for cancer diagnosis and prognosis and as therapeutic targets or agents to inhibit oncogenic microRNAs or proteins (Kristensen LS, Jakobsen T, Hager H, Kjems J, Nat Rev Clin Oncol 19:188-206, 2022). In this chapter, the procedures for the quantitation of a circRNA in single pancreatic cancer cells using ddPCR are described.


Asunto(s)
Biomarcadores de Tumor , Reacción en Cadena de la Polimerasa , ARN Circular , Análisis de la Célula Individual , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , ARN Circular/análisis , ARN Circular/genética , Reacción en Cadena de la Polimerasa/instrumentación , Reacción en Cadena de la Polimerasa/métodos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Biomarcadores de Tumor/análisis , Humanos
8.
Molecules ; 28(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175150

RESUMEN

Breast cancer is one of the most common cancers worldwide, posing a serious threat to human health. Recently, innate immunity has become a widely discussed topic in antitumor research. The STING pathway is an important component of innate immunity, and several STING agonists have been developed and applied in antitumor research. Dimeric amidobenzimidazole (diABZI) is one STING agonist and is a nucleotide analog with low serological stability and cell membrane permeability. In this study, we prepared diABZI-encapsulated liposomes (dLNPs) using the ammonium sulfate gradient method. The average particle size of the dLNPs was 99.76 ± 0.230 nm, and the encapsulation efficiency was 58.29 ± 0.53%. Additionally, in vivo and in vitro assays showed that the dLNPs had a sustained-release effect and that the circulation time in vivo was longer than 48 h. The expression of IFN-ß and IFN-γ was elevated in mice treated with dLNPs. Moreover, we found that dLNPs can recruit CD8+ T cells to tumor tissue and exert antitumor effects. The dLNPs-treated group showed the most significant efficacy: the average tumor volume was 231.46 mm3, which decreased by 78.16% and 54.47% compared to the PBS group and diABZI group. Meanwhile, the hemolysis rate of the dLNPs was 2%, showing high biocompatibility. In conclusion, dLNPs can effectively suppress tumor growth and possess great potential in breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Liposomas , Linfocitos T CD8-positivos , Inmunidad Innata
9.
Int J Pharm ; 636: 122851, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931535

RESUMEN

The postoperative thrombus attached to the damaged blood vessels severely obstructs drugs from crossing the damaged blood-brain barrier (BBB) and targeting residual glioma cells around surgical margins, leading to glioblastoma (GBM) recurrence. A thrombus-bypassing, BBB-crossing, and surgical margin-targeted nanodrug is needed to address this phenomenon. Encouraged by the intrinsic damaged vascular endothelium chemotaxis of platelets, a platelet membrane-coated nanodrug (PM-HDOX) delivering doxorubicin (DOX) for postoperative GBM treatment is proposed and systematically investigated. Because surgery damages the vascular endothelium on the BBB around the surgical margin, the platelet membrane coating endows PM-HDOX with its inherent capacity to cross the broken BBB and target the surgical margin. Moreover, preoperative administration combined with fast-targeted PM-HDOX can realize the potential of bypassing thrombus. In GBM resection models, PM-HDOX with preoperative administration demonstrated significantly enhanced BBB-crossing and surgical margin-targeted efficacy. In particular, the PM-HDOX intensities around the surgical margins of the preoperative administration group were more than twice that of the postoperative administration group due to bypassing the thrombus formed in the broken BBB. In the antitumor experiment, the preoperative administration of PM-HDOX significantly inhibited the growth of postoperative residual tumors and prolonged the median survival time of mice. In conclusion, preoperative administration of a biomimetic platelet nanodrug can be an efficient and promising drug delivery strategy for residual GBM after surgery.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Trombosis , Ratones , Animales , Márgenes de Escisión , Plaquetas/patología , Biomimética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos , Barrera Hematoencefálica , Glioblastoma/tratamiento farmacológico , Glioblastoma/cirugía , Glioblastoma/patología , Trombosis/tratamiento farmacológico , Nanopartículas/uso terapéutico , Línea Celular Tumoral
10.
Colloids Surf B Biointerfaces ; 217: 112671, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35792529

RESUMEN

Noble metals act as nanozymes that can generate reactive oxygen species (ROS) by catalysis to induce apoptosis of tumor cells for cancer therapy. But they are easy to aggregate, which will affect their further application. Carbon materials are often used as the carrier of noble metals to improve their catalytic performance. However, designing a composite structure to build an efficient carbon/noble metal hybrid nanozyme with high catalytic performance for tumor therapy is still a significant challenge. In this work, a core-in-shell structure nanozyme composed of gold nanoparticles (AuNPs) embedded in nitrogen-doped hollow carbon nanoshells (AuNPs@N-HCNs) were fabricated, which exhibited peroxidase-like (POD-like) and oxidase-like (OXD-like) activity. Compared with core-out-of-shell structure composite, the AuNPs@N-HCNs showed a better ability to generate ROS to kill tumor cells. Furthermore, AuNPs@N-HCNs also exhibited satisfactory photothermal conversion properties, which helped build a platform for photothermal therapy. Meanwhile, the enzyme activity produced by AuNPs@N-HCNs increased significantly under light irradiation. Comparing the size of AuNPs in carbon shell, 15 nm AuNPs were better than 2 nm in both enzyme-like activities and in vivo therapeutic effect. In vitro and in vivo studies demonstrated that under the synergistic effect of light-enhancing nanozyme catalysis and photothermal therapy, AuNPs@N-HCNs could induce cancer cell apoptosis and destroy tumors effectively, which provided evidence for the feasibility of tumor catalytic-photothermal treatment.


Asunto(s)
Nanopartículas del Metal , Nanocáscaras , Neoplasias , Carbono/química , Oro/química , Humanos , Nanopartículas del Metal/química , Neoplasias/terapia , Especies Reactivas de Oxígeno
11.
Cell Death Dis ; 13(6): 536, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676251

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive and highly vascularized brain tumor with poor prognosis. Endothelial cell-dependent angiogenesis and tumor cell-dependent Vasculogenic mimicry (VM) synergistically contribute to glioma vascularization and progression. However, the mechanism underlying GBM vascularization remains unclear. In this study, GBM stem cells (GSCs) were divided into high and low ß8 integrin (ITGB8) subpopulations. Co-culture assays followed by Cell Counting Kit-8 (CCK-8), migration, Matrigel tube formation, and sprouting assays were conducted to assess the proliferative, migratory and angiogenic capacity of GBM cells and human brain microvascular endothelial cells (hBMECs). An intracranial glioma model was constructed to assess the effect of ITGB8 on tumor vascularization in vivo. Our results indicated that ITGB8 expression was elevated in GSCs and positively associated with stem cell markers in glioma tissues, and could be induced by hypoxia and p38 activation. ITGB8 in GSCs inhibited the angiogenesis of hBMECs in vitro, while it promoted the ability of network formation and expression of VM-related proteins. The orthotopic GBM model showed that ITGB8 contributed to decreased angiogenesis, meanwhile enhanced invasiveness and VM formation. Mechanistic studies indicated that ITGB8-TGFß1 axis modulates VM and epithelial-mesenchymal transition (EMT) process via Smad2/3-RhoA signaling. Together, our findings demonstrated a differential role for ITGB8 in the regulation of angiogenesis and VM formation in GBM, and suggest that pharmacological inhibition of ITGB8 may represent a promising therapeutic strategy for treatment of GBM.


Asunto(s)
Glioblastoma , Glioma , Cadenas beta de Integrinas , Animales , Línea Celular Tumoral , Células Endoteliales/metabolismo , Glioblastoma/patología , Glioma/patología , Humanos , Ratones , Ratones Desnudos , Neovascularización Patológica/metabolismo
12.
J Magn Reson Imaging ; 56(6): 1912-1923, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35499275

RESUMEN

BACKGROUND: The monitoring of immunotherapies is still based on changes in the tumor size in imaging, with a long evaluation period and low sensitivity. PURPOSE: To investigate the effectiveness of diffusion kurtosis imaging (DKI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing the therapeutic efficacy of anti-programmed death-1 (PD-1) therapy in a mouse triple negative breast cancer (TNBC) model. STUDY TYPE: Prospective. ANIMAL MODEL: A total of 54 BALB/c mouse subcutaneous 4 T1 transplantation models of TNBC. FIELD STRENGTH/SEQUENCE: A 3.0-T; turbo spin echo (TSE) T2-weighted imaging, DKI with seven b values (0, 500, 1000, 1500, 2000, 2500, and 3000 sec/mm2 ) and T1-twist DCE acquisition series. ASSESSMENT: DKI and DCE-MRI parameters were evaluated by two radiologists independently. Regions of interest (ROIs) were drawn manually on the maximum cross-sectional area of the lesion; care was taken to avoid necrotic areas. The tumor cell density, the CD45 and CD31 levels were analyzed by two pathologists. STATISTICAL TESTS: The two-tailed unpaired t-test, Mann-Whitney U test, Fisher's exact test and Pearson correlation coefficient were performed. A P < 0.05 was considered statistically significant. RESULTS: The apparent diffusion coefficient (ADC), mean diffusivity (MD), Ktrans and Kep values were significantly different between the two groups at each time point after treatment. There were significant differences in the mean kurtosis (MK) and Ve values between the two groups at 5 and 10 days after treatment but no significant differences at 15 days (P = 0.317 and 0.183, respectively). The ADC and MD values were significantly correlated with tumor cell density (ADC, r = -0.833; MD, r = 0.890) and the CD45 level (ADC, r = 0.720; MD, r = 0.718). The Ktrans and Kep values were significantly correlated with the CD31 level (Ktrans , r = 0.820; Kep , r = 0.683). DATA CONCLUSION: DKI and DCE-MRI could reflect the changes in tumor microstructure and tumor tissue vasculature after anti-PD-1 therapy, respectively. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 4.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Medios de Contraste/química , Estudios Prospectivos , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora
13.
Nanoscale ; 14(21): 7927-7933, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35593376

RESUMEN

Octyl-silane-coated Al2O3 nanoparticles are found to be a promising conductivity-reducing additive for thermoplastic ternary blends comprising low-density polyethylene (LDPE), isotactic polypropylene and a styrenic copolymer. The ternary blend nanocomposites were prepared by compounding the blend components together with an LDPE-based masterbatch that contained the nanoparticles. The nanoparticles did not affect the superior stiffness of the ternary blends, compared to neat LDPE, between the melting temperatures of the two polyolefins. As a result, ternary blend nanocomposites comprising 38 wt% polypropylene displayed a storage modulus of more than 10 MPa up to at least 150 °C, independent of the chosen processing conditions. Moreover, the ternary blend nanocomposites featured a low direct-current electrical conductivity of about 3 × 10-15 S m-1 at 70 °C and an electric field of 30 kV mm-1, which could only be achieved through the presence of both polypropylene and Al2O3 nanoparticles. This synergistic conductivity-reducing effect may facilitate the design of more resistive thermoplastic insulation materials for high-voltage direct current (HVDC) power cables.

14.
Stem Cells Int ; 2022: 6430565, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463812

RESUMEN

Mesenchymal stem cells (MSCs) have emerged as putative therapeutic tools due to their intrinsic tumor tropism, and anti-tumor and immunoregulatory properties. The limited passage and self-differentiation abilities of MSCs in vitro hinder preclinical studies on them. In this study, we focused on the safety of immortalized mesenchymal stem cells (im-MSCs) and, for the first time, studied the feasibility of im-MSCs as candidates for the treatment of glioma. The im-MSCs were constructed by lentiviral transfection of genes. The proliferative capacity of im-MSCs and the proliferative phenotype of MSCs and MSCs co-cultured with glioma cells (U87) were measured using CCK-8 or EdU assays. After long-term culture, karyotyping of im-MSCs was conducted. The tumorigenicity of engineered MSCs was evaluated using soft agar cloning assays. Next, the engineered cells were injected into the brain of female BALB/c nude mice. Finally, the cell membranes of im-MSCs were labeled with DiO or DiR to detect their ability to be taken up by glioma cells and target in situ gliomas using the IVIS system. Engineered cells retained the immunophenotype of MSC; im-MSCs maintained the ability to differentiate into mesenchymal lineages in vitro; and im-MSCs showed stronger proliferative capacity than unengineered MSCs but without colony formation in soft agar, no tumorigenicity in the brain, and normal chromosomes. MSCs or im-MSCs co-cultured with U87 cells showed enhanced proliferation ability, but did not show malignant characteristics in vitro. Immortalized cells continued to express homing molecules. The cell membranes of im-MSCs were taken up by glioma cells and targeted in situ gliomas in vivo, suggesting that im-MSCs and their plasma membranes can be used as natural drug carriers for targeting gliomas, and providing a safe, adequate, quality-controlled, and continuous source for the treatment of gliomas based on whole-cell or cell membrane carriers.

15.
Acta Biomater ; 138: 518-527, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34775124

RESUMEN

As a promising new form of non-apoptotic regulated cell death, ferroptosis has potential as an effective supplement to apoptosis-based cancer treatments. However, high intracellular glutathione (GSH) levels and insufficient hydrogen peroxide (H2O2) in the tumor limit the efficacy of ferroptosis. Here, we designed a theranostic nanoplatform, named FCS/GCS, by incorporating amphiphilic polymer skeletal (P-SS-D), cinnamaldehyde prodrug (CA-OH) and iron ions (Fe3+)/gadolinium ions (Gd3+) via chelation reactions between Fe3+/Gd3+ and polyphenols. When delivered in the tumor microenvironment with high GSH level, the nanoparticles are depolymerized by the poly(disulfide) backbone of P-SS-D. The activated CA consumes the GSH and elevates intracellular H2O2, followed by a high level of Fenton reaction to generate abundant •OH levels. The generation of reactive oxygen species (ROS) further accelerates CA activation. The GSH consumption by disulfide, CA and Fe3+, downregulates GPX4 and generates •OH, which accelerate lipid peroxides (LPO) accumulation and consequently enhances ferroptosis. Additionally, the released Gd3+ may serve as a contrast agent for tumor-specific T1-weighted magnetic resonance imaging (MRI). Thus, the rationally designed FCS/GCS system is a promising strategy for effective MRI-based visual ferroptosis therapy. STATEMENT OF SIGNIFICANCE: Ferroptosis is a new form of non-apoptotic regulated cell death and has potential as an effective supplement to apoptosis-based cancer treatment. However, the efficiency of ferroptosis is limited by excessive glutathione level and insufficient hydrogen peroxide level in tumor site. In this study, we fabricate a theranostic nanoplatform (FCS/GCS) to amplify oxidation stress in tumor site for effective ferroptosis-based cancer treatment, and tumor specific magnetic resonance imaging is introduced for supervision. Our nanoplatform may provide a promising strategy for MRI-based visual ferroptosis therapy with high specificity and efficiency.


Asunto(s)
Ferroptosis , Neoplasias , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno , Imagen por Resonancia Magnética , Estrés Oxidativo , Microambiente Tumoral
16.
Front Immunol ; 12: 754818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691075

RESUMEN

Background: HNSCC is a heterogeneous disease, which arises from distinct anatomic subsites, associates with various risk factors and possesses diverse molecular pathological features. Generally, HNSCC is considered as an immunosuppressive disease, characterized by abnormal tumor immune microenvironment. The TNF family plays a crucial role in the survival, proliferation, differentiation, and effector functions in both immune and non-immune cells. However, the expression patterns of TNF in HNSCC remains to be systematically analyzed. Methods: We downloaded transcriptional profile data of HNSCC from TCGA and GEO datasets. Unsupervised clustering methods were used to identify different TNF patterns and classify patients for further analysis. PCA was conducted to construct a TNF relevant score, which we called risk score. Results: In this study, we systematically evaluated the patterns of TNF family and tumor immune microenvironment characteristics of HNSCC patients by clustering the expression of 46 members of TNF family. We identified two subtypes with distinct clinical and immune characteristics in HNSCC and constructed a risk scoring system based on the expression profile of TNF family genes. Conclusion: Risk score serves as a reliable predictor of overall survival, clinical characteristics, and immune cell infiltration, which has the potential to be applied as a valuable biomarker for HNSCC immunotherapy.


Asunto(s)
Biomarcadores de Tumor/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Microambiente Tumoral/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Humanos , Transcriptoma , Factor de Necrosis Tumoral alfa/biosíntesis
17.
Cell Commun Signal ; 19(1): 102, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635112

RESUMEN

Glioma is the most common primary brain tumor and its prognosis is poor. Despite surgical removal, glioma is still prone to recurrence because it grows rapidly in the brain, is resistant to chemotherapy, and is highly aggressive. Therefore, there is an urgent need for a platform to study the cell dynamics of gliomas in order to discover the characteristics of the disease and develop more effective treatments. Although 2D cell models and animal models in previous studies have provided great help for our research, they also have many defects. Recently, scientific researchers have constructed a 3D structure called Organoids, which is similar to the structure of human tissues and organs. Organoids can perfectly compensate for the shortcomings of previous glioma models and are currently the most suitable research platform for glioma research. Therefore, we review the three methods currently used to establish glioma organoids. And introduced how they play a role in the diagnosis and treatment of glioma. Finally, we also summarized the current bottlenecks and difficulties encountered by glioma organoids, and the current efforts to solve these difficulties. Video Abstract.


Asunto(s)
Neoplasias Encefálicas/genética , Encéfalo/metabolismo , Técnicas de Cultivo de Célula , Glioma/genética , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Organoides/metabolismo , Organoides/patología , Pronóstico
18.
Front Cell Dev Biol ; 9: 663207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540823

RESUMEN

High-grade glioma is highly invasive and malignant, resistant to combined therapies, and easy to relapse. A better understanding of circular RNA (circRNA) biological function in high-grade glioma might contribute to the therapeutic efficacy. Here, a circRNA merely upregulated in high-grade glioma, circGLIS3 (hsa_circ_0002874, originating from exon 2 of GLIS3), was validated by microarray and Real-time quantitative reverse transcription PCR (qRT-PCR). The role of circGLIS3 in glioma was assessed by functional experiments both in vitro and in vivo. Fluorescence in situ hybridization (FISH), RNA pull-down, RNA immunoprecipitation (RIP), and immunohistochemical staining were performed for mechanistic study. Cocultured brain endothelial cells with glioma explored the role of exosome-derived circGLIS3 in the glioma microenvironment. We found that upregulation of circGLIS3 promoted glioma cell migration and invasion and showed aggressive characteristics in tumor-bearing mice. Mechanistically, we found that circGLIS3 could promote the Ezrin T567 phosphorylation level. Moreover, circGLIS3 could be excreted by glioma through exosomes and induced endothelial cell angiogenesis. Our findings indicate that circGLIS3 is upregulated in high-grade glioma and contributes to the invasion and angiogenesis of glioma via modulating Ezrin T567 phosphorylation.

19.
Mol Immunol ; 139: 106-114, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34464838

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with M1-type macrophage activation. Mesenchymal stem cells (MSCs) therapies have shown promise in models of pathologies relevant to SLE, while the function and mechanism of MSC-derived exosomes (MSC-exo) were still unclear. We aimed to interrogate the effect of MSC-exo on M1-type polarization of macrophage and investigate mechanisms underlying MSC-exo. Exosomes were isolated from MSC and the effect of MSC-exo on macrophage polarization was evaluated. The key tRNA-derived fragments (tRFs) carried by exosomes were identified by small RNA sequencing and verified in clinical samples. The effect of exosomal-tRFs on macrophage polarization was examined. In this study, MSC-exo dramatically suppressed expression of M1 markers, and reduced the levels of TNF-α and IL-1ß, while increased M2 markers in macrophages. A total of 243 differently expressed tRFs (DEtRFs) were identified between MSC-exo treated and untreated macrophage, among which 103 DEtRFs were up-regulated in response to MSC-exo treatment, including tsRNA-21109. The target genes of tsRNA-21109 were mainly enriched in DNA transcription-related GO function, and mainly involved in inflammatory-related pathways, including Rap1, Ras, Hippo, Wnt, MAPK, TGF-beta signaling pathway. The tsRNA-21109 was lowly expressed in clinical samples and was associated with the patient data in SLE. Compared to the normal MSC-exo, the tsRNA-21109-privative MSC-exo up-regulated M1 marker (CD80, NOS2, MCP1) and down-regulated M2 marker (CD206, ARG1, MRC2), also increased the levels of TNF-α and IL-1ß in macrophages. Western blot and immunofluorescence confirmed that the proportion of CD80/ARG-1 was increased in macrophages treated with tsRNA-21109-privatived MSC-exo compared to that with control MSC-exo. In conclusion, MSC-exo inhibited the M1-type polarization of macrophages, possibly through transferring tsRNA-21109, which may develop as a novel therapeutic target for SLE.


Asunto(s)
Exosomas/inmunología , Lupus Eritematoso Sistémico/inmunología , Activación de Macrófagos/inmunología , Células Madre Mesenquimatosas/metabolismo , ARN de Transferencia/inmunología , Adulto , Exosomas/metabolismo , Femenino , Regulación de la Expresión Génica/inmunología , Humanos , Lupus Eritematoso Sistémico/metabolismo , Masculino , ARN de Transferencia/metabolismo
20.
World Neurosurg ; 152: e436-e448, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34062295

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most lethal primary tumor in the central nervous system. Ferroptosis is a type of programmed iron-dependent cell death. In the present study, we aimed to identify prognostic ferroptosis-related genes and their role in tumor immunity. METHODS: We used differential and survival analysis and The Cancer Genome Atlas (TCGA) GBM RNA sequencing data. We also used systematic bioinformatic methods. RESULTS: Using differential and survival analysis, we found that a ferroptosis suppressor was predominant within ferroptosis-related genes in TCGA GBM RNA sequencing data. By integrating TCGA and gene expression omnibus GBM cohorts, 12 dysregulated ferroptosis suppressors were detected. Among the suppressors, CD44, heat shock protein family B (small) member 1 (HSPB1), and solute carrier family 40 member 1 (SLC40A1) were relevant to overall survival. Using systematic bioinformatic methods, we observed that ferroptosis suppressor expression correlated with immunosuppression, which could be attributed to T-cell exhaustion and cytotoxic T-lymphocyte evasion. Finally, we observed that a potential ferroptosis-inducing drug, acetaminophen, interacted with CD44, HSPB1, and SLC40A1. CONCLUSIONS: The ferroptosis suppressors CD44, HSPB1, and SLC40A1 were significantly associated with prognosis in GBM and correlated with immunosuppression (i.e., T-cell exhaustion and cytotoxic T-lymphocyte evasion). Acetaminophen might have an antitumor function in GBM by regulating CD44, HSPB1, and SLC40A1 to induce ferroptosis. Our results are expected to be of great significance in developing new immunotherapy strategies for GBM.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Ferroptosis/genética , Glioblastoma/genética , Glioblastoma/inmunología , Terapia de Inmunosupresión , Acetaminofén/farmacología , Proteínas de Transporte de Catión/genética , Biología Computacional , Ferroptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico/genética , Humanos , Receptores de Hialuranos/genética , Estimación de Kaplan-Meier , Chaperonas Moleculares/genética , Pronóstico , Análisis de Supervivencia , Linfocitos T Citotóxicos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA