Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Med Oncol ; 41(6): 137, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705933

RESUMEN

Metastasis poses a significant challenge in combating tumors. Even in papillary thyroid cancer (PTC), which typically exhibits a favorable prognosis, high recurrence rates are attributed to metastasis. Cytoplasmic linker protein 170 (CLIP170) functions as a classical microtubule plus-end tracking protein (+TIP) and has shown close association with cell migration. Nevertheless, the specific impact of CLIP170 on PTC cells remains to be elucidated. Our analysis of the GEO and TCGA databases unveiled an association between CLIP170 and the progression of PTC. To explore the impact of CLIP170 on PTC cells, we conducted various assays. We evaluated its effects through CCK-8, wound healing assay, and transwell assay after knocking down CLIP170. Additionally, the influence of CLIP170 on the cellular actin structure was examined via immunofluorescence; we further investigated the molecular expressions of epithelial-mesenchymal transition (EMT) and the transforming growth factor-ß (TGF-ß) signaling pathways through Western blotting and RT-qPCR. These findings were substantiated through an in vivo nude mouse model of lung metastasis. We observed a decreased expression of CLIP170 in PTC in contrast to normal thyroid tissue. Functionally, the knockdown of CLIP170 (CLIP170KD) notably enhanced the metastatic potential and EMT of PTC cells, both in vitro and in vivo. Mechanistically, CLIP170KD triggered the activation of the TGF-ß pathway, subsequently promoting tumor cell migration, invasion, and EMT. Remarkably, the TGF-ß inhibitor LY2157299 effectively countered TGF-ß activity and significantly reversed tumor metastasis and EMT induced by CLIP170 knockdown. In summary, these findings collectively propose CLIP170 as a promising therapeutic target to mitigate metastatic tendencies in PTC.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas Asociadas a Microtúbulos , Proteínas de Neoplasias , Transducción de Señal , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Factor de Crecimiento Transformador beta , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Movimiento Celular , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Ratones Desnudos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/genética , Factor de Crecimiento Transformador beta/metabolismo
2.
Nutrients ; 16(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794754

RESUMEN

Alcohol consumption significantly impacts disease burden and has been linked to various diseases in observational studies. However, comprehensive meta-analyses using Mendelian randomization (MR) to examine drinking patterns are limited. We aimed to evaluate the health risks of alcohol use by integrating findings from MR studies. A thorough search was conducted for MR studies focused on alcohol exposure. We utilized two sets of instrumental variables-alcohol consumption and problematic alcohol use-and summary statistics from the FinnGen consortium R9 release to perform de novo MR analyses. Our meta-analysis encompassed 64 published and 151 de novo MR analyses across 76 distinct primary outcomes. Results show that a genetic predisposition to alcohol consumption, independent of smoking, significantly correlates with a decreased risk of Parkinson's disease, prostate hyperplasia, and rheumatoid arthritis. It was also associated with an increased risk of chronic pancreatitis, colorectal cancer, and head and neck cancers. Additionally, a genetic predisposition to problematic alcohol use is strongly associated with increased risks of alcoholic liver disease, cirrhosis, both acute and chronic pancreatitis, and pneumonia. Evidence from our MR study supports the notion that alcohol consumption and problematic alcohol use are causally associated with a range of diseases, predominantly by increasing the risk.


Asunto(s)
Consumo de Bebidas Alcohólicas , Predisposición Genética a la Enfermedad , Análisis de la Aleatorización Mendeliana , Humanos , Masculino , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Artritis Reumatoide/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/etiología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/epidemiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/etiología , Factores de Riesgo , Femenino
3.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003323

RESUMEN

The yellowing of leaves due to iron deficiency is a prevalent issue in peach production. Although the capacity of exogenous melatonin (MT) to promote iron uptake in peach plants has been demonstrated, its underlying mechanism remains ambiguous. This investigation was carried out to further study the effects of exogenous MT on the iron absorption and transport mechanisms of peach (Prunus persica) plants under iron-deficient conditions through transcriptome sequencing. Under both iron-deficient and iron-supplied conditions, MT increased the content of photosynthetic pigments in peach leaves and decreased the concentrations of pectin, hemicellulose, cell wall iron, pectin iron, and hemicellulose iron in peach plants to a certain extent. These effects stemmed from the inhibitory effect of MT on the polygalacturonase (PG), cellulase (Cx), phenylalanine ammonia-lyase (PAL), and cinnamoyl-coenzyme A reductase (CCR) activities, as well as the promotional effect of MT on the cinnamic acid-4-hydroxylase (C4H) activity, facilitating the reactivation of cell wall component iron. Additionally, MT increased the ferric-chelate reductase (FCR) activity and the contents of total and active iron in various organs of peach plants under iron-deficient and iron-supplied conditions. Transcriptome analysis revealed that the differentially expressed genes (DEGs) linked to iron metabolism in MT-treated peach plants were primarily enriched in the aminoacyl-tRNA biosynthesis pathway under iron-deficient conditions. Furthermore, MT influenced the expression levels of these DEGs, regulating cell wall metabolism, lignin metabolism, and iron translocation within peach plants. Overall, the application of exogenous MT promotes the reactivation and reutilization of iron in peach plants.


Asunto(s)
Deficiencias de Hierro , Melatonina , Prunus persica , Hierro/metabolismo , Prunus persica/metabolismo , Melatonina/farmacología , Pectinas/metabolismo
4.
BMC Complement Med Ther ; 23(1): 345, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770919

RESUMEN

BACKGROUND: Most lung cancer patients worldwide (stage IV non-small cell lung cancer, NSCLC) have a poor survival: 25%-30% patients die < 3 months. Yet, of those surviving > 3 months, 10%-15% patients survive (very) long. Astragali radix (AR) is an effective traditional Chinese medicine widely used for non-small cell lung cancer (NSCLC). However, the pharmacological mechanisms of AR on NSCLC remain to be elucidated. METHODS: Ultra Performance Liquid Chromatography system coupled with Q-Orbitrap HRMS (UPLC-Q-Orbitrap HRMS) was performed for the qualitative analysis of AR components. Then, network module analysis and molecular docking-based approach was conducted to explore underlying mechanisms of AR on NSCLC. The target genes of AR were obtained from four databases including TCMSP (Traditional Chinese Medicine Systems Pharmacology) database, ETCM (The Encyclopedia of TCM) database, HERB (A high-throughput experiment- and reference-guided database of TCM) database and BATMAN-TCM (a Bioinformatics Analysis Tool for Molecular mechanism of TCM) database. NSCLC related genes were screened by GEO (Gene Expression Omnibus) database. The STRING database was used for protein interaction network construction (PIN) of AR-NSCLC shared target genes. The critical PIN were further constructed based on the topological properties of network nodes. Afterwards the hub genes and network modules were analyzed, and enrichment analysis were employed by the R package clusterProfiler. The Autodock Vina was utilized for molecular docking, and the Gromacs was utilized for molecular dynamics simulations Furthermore, the survival analysis was performed based on TCGA (The Cancer Genome Atlas) database. RESULTS: Seventy-seven AR components absorbed in blood were obtained. The critical network was constructed with 1447 nodes and 28,890 edges. Based on topological analysis, 6 hub target genes and 7 functional modules were gained. were obtained including TP53, SRC, UBC, CTNNB1, EP300, and RELA. After module analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that AR may exert therapeutic effects on NSCLC by regulating JAK-STAT signaling pathway, PI3K-AKT signaling pathway, ErbB signaling pathway, as well as NFkB signaling pathway. After the intersection calculation of the hub targets and the proteins participated in the above pathways, TP53, SRC, EP300, and RELA were obtained. These proteins had good docking affinity with astragaloside IV. Furthermore, RELA was associated with poor prognosis of NSCLC patients. CONCLUSIONS: This study could provide chemical component information references for further researches. The potential pharmacological mechanisms of AR on NSCLC were elucidated, promoting the clinical application of AR in treating NSCLC. RELA was selected as a promising candidate biomarker affecting the prognosis of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Neoplasias Pulmonares/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Mapas de Interacción de Proteínas
5.
Nat Commun ; 14(1): 2884, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37208326

RESUMEN

The spatial organization of cell membrane glycoproteins and glycolipids is critical for mediating the binding of ligands, receptors, and macromolecules on the plasma membrane. However, we currently do not have the methods to quantify the spatial heterogeneities of macromolecular crowding on live cell surfaces. In this work, we combine experiment and simulation to report crowding heterogeneities on reconstituted membranes and live cell membranes with nanometer spatial resolution. By quantifying the effective binding affinity of IgG monoclonal antibodies to engineered antigen sensors, we discover sharp gradients in crowding within a few nanometers of the crowded membrane surface. Our measurements on human cancer cells support the hypothesis that raft-like membrane domains exclude bulky membrane proteins and glycoproteins. Our facile and high-throughput method to quantify spatial crowding heterogeneities on live cell membranes may facilitate monoclonal antibody design and provide a mechanistic understanding of plasma membrane biophysical organization.


Asunto(s)
Proteínas de la Membrana , Fagocitosis , Humanos , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Anticuerpos Monoclonales/metabolismo , Glicoproteínas/metabolismo , Sustancias Macromoleculares/química
6.
Cell Commun Signal ; 21(1): 41, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823590

RESUMEN

BACKGROUND: During myocardial damage, the sex hormone estrogen and CD73, the main enzyme that converts AMP into adenosine, are cardioprotective molecules. However, it is unclear how these two molecules work together to provide cardioprotection. The current study aimed to elucidate the interaction between estrogen and CD73 under chronic stress. METHODS: Ovariectomy and SHAM operations were done on FVB wild-type (WT) female mice. Two weeks after the operation, the mice were treated with daily isoproterenol (10 mg/kg/day) injections for 14 days. The effect of E2 on relevant cardiac injury biomarkers (BNP, ANP), myocardial morphology (cardiomyocyte surface area), electrocardiography, CD73 protein expression and activity, and macrophage (CD86 + and CD206 +) infiltrations were assessed. In vitro, H9C2 cells were treated with 1 nM of estrogen and 10 mM APCP (CD73 inhibitor α, ß-methylene adenosine-5'-diphosphate), 10 µM isoproterenol and 20 µm LY294002 (PI3K inhibitor) for 24 h and western blot was done to elucidate the mechanism behind the effect of estrogen on the CD73/adenosine axis. RESULTS: Estrogen deficiency during chronic catecholamine stress caused myocardial injury, thereby triggering the hyperactivity of the CD73/adenosine axis, which aggravated myocarditis, adverse remodeling, and arrhythmias. However, estrogen normalizes CD73/Adenosine axis via the upregulation of PI3K/Akt pathways to prevent adverse outcomes during stress. In vivo results showed that the inhibition of PI3K significantly decreased PI3K/Akt pathways while upregulating the CD73/adenosine axis and apoptosis. CONCLUSION: Estrogen's pleiotropy cardioprotection mechanism during stress includes its normalization of the CD73/Adenosine axis via the PI3K/Akt pathway. Video Abstract.


Asunto(s)
Adenosina , Miocarditis , Femenino , Ratones , Animales , Adenosina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Catecolaminas , Isoproterenol/farmacología , Arritmias Cardíacas , Estrógenos/farmacología , Apoptosis
7.
J Endocrinol ; 256(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633355

RESUMEN

Cardiac lipid accumulation and inflammation have been linked to stress. There is mounting evidence that estrogen reduces lipid deposition and has anti-inflammatory properties; however, the exact mechanism is unknown. Recent studies showed that NLRP3 inflammasome is a key trigger of cardiac inflammation, and it is also involved in the progression of metabolic diseases. This study investigated the crucial role of the NLRP3 inflammasome in lipid accumulation during stress and the regulatory mechanism of estrogen in this process. Stress models were established by isoproterenol treatments in mice and H9c2 cells. With 5 mM isoproterenol, NLRP3 inflammasome activation was observed earlier at 0.5 h than that of lipid accumulation at 1 h in H9c2 cells. At 1 h after stress, the isoproterenol concentration required for NLRP3 inflammasome activation was lower compared to the concentration required for lipid deposition in mice myocardia and H9c2 cells; the former required 210 mg/kg or 10 µM for activation while the latter required 280 mg/kg or 5 mM. Knocking out or inhibiting NLRP3 inflammasome reduced myocardial lipid accumulation caused by stress in the mice myocardia and H9c2 cells. Estrogen downregulated NLRP3 inflammasome and reduced lipid accumulation in cardiomyocytes during stress. Finally, the anti-inflammatory and lipid-lowering effect of estrogen disappeared in ß2ARKO mice and H9c2 cells pre-treated with ICI118,551. In conclusion, the upregulation of NLRP3 inflammasome induced by stress led to myocardial lipid accumulation, and ß2AR downregulated NLRP3 inflammasome thereby reducing lipid accumulation which was dependent on the estrogenic environment.


Asunto(s)
Inflamasomas , Miocarditis , Animales , Ratones , Antiinflamatorios , Estrógenos/farmacología , Inflamasomas/metabolismo , Inflamación/metabolismo , Isoproterenol/farmacología , Lípidos , Miocarditis/etiología , Miocarditis/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
8.
Int J Phytoremediation ; 25(3): 350-358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35701097

RESUMEN

The cadmium (Cd) contaminated agricultural soil has become serious in recent years, but it will take long time for Cd-hyperaccumulator to remedy. To speed up the remediation of agricultural soil and achieve the safe agricultural production as soon as possible, the potential Cd-hyperaccumulator Solanum photeinocarpum Nakamura et Odashima was intercropped with its post-grafting generations in Cd-contaminated soil. Intercropping increased the biomass, Cd contents and Cd extractions of S. photeinocarpum and its post-grafting generations in the pot and field experiments. Both the whole plant or shoot biomass and the Cd extraction by whole plant or shoot in intercroppings had a linear regression relationship with that in monocultures. In the field experiment, intercropping increased the shoot Cd extraction of S. photeinocarpum by 9.86%-40.06% compared with the monoculture. Intercropping increased the content of chlorophyll, activity of superoxide dismutase, activity of catalase, and soluble protein content of S. photeinocarpum and its post-grafting generations but reduced their peroxidase activities in the pot experiment. Therefore, intercropping S. photeinocarpum with its post-grafting generations can improve their phytoremediation ability, and the best choice is S. photeinocarpum intercropped with its post-grafting generation of wild potato rootstock. Novelty statementIntercropping Solanum photeinocarpum Nakamura et Odashima with its post-grafting generations could mutually promote the Cd accumulation in the two types of plant species, and improve their phytoremediation ability for remedying the Cd-contaminated soil.


Asunto(s)
Contaminantes del Suelo , Solanum , Cadmio/metabolismo , Solanum/metabolismo , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Raíces de Plantas/química , Suelo
9.
Anal Chem ; 94(42): 14642-14651, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36218121

RESUMEN

In this work, near-infrared fluorescent silver nanoclusters (Ag NCs) were prepared based on the in situ formed poly methacrylic acid (PMAA) as the template and stabilizer, which is synthesized by methacrylic acid (MAA) and hydroxyl radical (·OH) that is generated by the cascade nanoenzyme reaction of cupric oxide nanoparticles (CuO NPs). CuO NPs possess the intrinsic glutathione-like (GPx-like) and peroxidase-like (POD-like) activities, which can catalyze glutathione (GSH) and O2 to produce hydrogen peroxide (H2O2), and then transform into ·OH. The fluorescence intensity of Ag NCs decreases with the addition of GSH, because the -SH can easily anchor on the surface, resulting in the PMAA leaving the Ag NCs, and the coeffect of GSH and PMAA results in the aggregation to form larger Ag NPs. A good linear relationship between the fluorescence quenching rate and the GSH concentration was found in the range 0.01-40 µM with the detection limit 8.0 nM. The Ag NCs can be applied in the detection of GSH in the serum, as well as bioimaging of endogenous and exogenous GSH in cells with high sensitivity. Moreover, the normal and cancer cells can be distinguished through bioimaging because of the different GSH levels. The new method for the preparation of biocompatible nanoprobe based on the nanozyme tandem catalysis and the in situ formed template can avoid the direct usage of polymers or protein templates that hinder preparation and separation, providing a reliable approach for the synthesis, biosensing, and bioimaging of nanoclusters.


Asunto(s)
Nanopartículas del Metal , Plata , Polielectrolitos , Peróxido de Hidrógeno , Radical Hidroxilo , Glutatión , Catálisis , Peroxidasas
10.
Mikrochim Acta ; 189(3): 119, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35195786

RESUMEN

A novel nanocomposite of CuO nanoparticle-modified Zr-MOF (CuO/UiO-66) was synthesized and developed as a fluorescence nanoplatform for H2O2 and adenosine triphosphate (ATP) via the "turn-on-off" mode in the presence of terephthalic acid (TA). The structure of CuO/UiO-66 was thoroughly characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and other techniques. The CuO/UiO-66 with enhanced peroxidase-like (POD) activity obtained due to the Zr4+ in UiO-66 is beneficial to the aggregation of CuO NPs on its surface. As a result, the strengthened fluorescence at 425 nm with the excitation of 300 nm was found due to the highly fluorescent species of TAOH. This is produced by the oxidation of TA by ·OH that came from the catalysis of H2O2 via the peroxidase mimic of CuO/UiO-66. Hence the modification of CuO NPs on porous UiO-66 can provide a friendly and sensitive physiological condition for H2O2 detection. However, upon addition of ATP, the fluorescence intensity of TAOH at 425 nm effectively declined owing to the formation of complexation of Zr4+-ATP and the interaction of CuO to ATP which hampers the catalytic reaction of CuO/UiO-66 to H2O2. The specific interaction induced "inhibition of the peroxide-like activity" endows the sensitive and selective recognition of ATP. The detection limits were 16.87 ± 0.2 nM and 0.82 ± 0.1 nM, and linear analytical ranges were 0.02-100 µM and 0.002-30 µM for H2O2 and ATP, respectively. The novel strategy was successfully applied to H2O2 and ATP determination in serum samples with recoveries of 97.2-103.8% for H2O2 and 97.6-101.7% for ATP, enriching the avenue to design functional MOFs and providing new avenue of multicomponent bioanalysis.


Asunto(s)
Peróxido de Hidrógeno , Nanopartículas , Adenosina Trifosfato , Cobre , Fluorescencia , Peróxido de Hidrógeno/química , Estructuras Metalorgánicas , Peroxidasas/química , Ácidos Ftálicos
11.
Front Cell Dev Biol ; 9: 732952, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966735

RESUMEN

Heart failure development is characterized by persistent inflammation and progressive fibrosis owing to chronic catecholamine stress. In a chronic stress state, elevated catecholamines result in the overstimulation of beta-adrenergic receptors (ßARs), specifically ß2-AR coupling with Gαi protein. Gαi signaling increases the activation of receptor-stimulated p38 mitogen-activated-protein-kinases (p38 MAPKs) and extracellular signal-regulated kinases (ERKs). Phosphorylation by these kinases is a common way to positively regulate the catalytic activity of A Disintegrin and Metalloprotease 17 (ADAM17), a metalloprotease that has grown much attention in recent years and has emerged as a chief regulatory hub in inflammation, fibrosis, and immunity due to its vital proteolytic activity. ADAM17 cleaves and activates proinflammatory cytokines and fibrotic factors that enhance cardiac dysfunction via inflammation and fibrosis. However, there is limited information on the cardiovascular aspect of ADAM17, especially in heart failure. Hence, this concise review provides a comprehensive insight into the structure of ADAM17, how it is activated and regulated during chronic catecholamine stress in heart failure development. This review highlights the inflammatory and fibrotic roles of ADAM17's substrates; Tumor Necrosis Factor α (TNFα), soluble interleukin-6 receptor (sIL-6R), and amphiregulin (AREG). Finally, how ADAM17-induced chronic inflammation and progressive fibrosis aggravate cardiac dysfunction is discussed.

12.
Front Cardiovasc Med ; 8: 762576, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778413

RESUMEN

Background: Contrast induced nephropathy (CIN) is a common complication in patients receiving intravascular contrast media. In 2020, the American College of Radiology and the National Kidney Foundation issued a new contrast induced acute kidney injury (CI-AKI) criteria. Therefore, we aimed to explore the potential risk factors for CIN under the new criteria, and develop a predictive model for patients with coronary artery disease (CAD) with relatively normal renal function (NRF). Methods: Patients undergoing coronary angiography or percutaneous coronary intervention at Zhongshan Hospital, Fudan University between May 2019 and April 2020 were consecutively enrolled. Eligible candidates were selected for statistical analysis. Univariate and multivariate logistic regression analyses were used to identify the predictive factors. A stepwise method and a machine learning (ML) method were used to construct a model based on the Akaike information criterion. The performance of our model was evaluated using the area under the receiver operating characteristic curves (AUC) and calibration curves. The model was further simplified into a risk score. Results: A total of 2,009 patients with complete information were included in the final statistical analysis. The results showed that the incidence of CIN was 3.2 and 1.2% under the old and new criteria, respectively. Three independent predictors were identified: baseline uric acid level, creatine kinase-MB level, and log (N-terminal pro-brain natriuretic peptide) level. Our stepwise model had an AUC of 0.816, which was higher than that of the ML model (AUC = 0.668, P = 0.09). The model also achieved accurate predictions regarding calibration. A risk score was then developed, and patients were divided into two risk groups: low risk (total score < 10) and high risk (total score ≥ 10). Conclusions: In this study, we first identified important predictors of CIN in patients with CAD with NRF. We then developed the first CI-AKI model on the basis of the new criteria, which exhibited accurate predictive performance. The simplified risk score may be useful in clinical practice to identify high-risk patients.

13.
Int J Cancer ; 123(7): 1516-25, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18649355

RESUMEN

Human normal mammary epithelial cells (NMECs) have 2 major in vitro growth restrictions, senescence and crisis. Cellular immortalization is considered a hallmark of malignancy. However, cancerous mammary epithelial cells (CMECs) that are thought to have passed growth barriers in vivo usually cannot be established long-term in vitro. Here we show that CMECs deprived of their natural environment and grown in conventional complete medium behave similar to NMECs, e.g., they stop producing telomerase and become senescent. Like NMECs, CMECs are rescued by SV40 large T (LT) from senescence but not from crisis. The telomere length of both LT-transformed NMEC (N-LT) and CMEC (C-LT) cells first shortens but later partially recovers after telomerase activation. Both cell types upregulate ErbB2 expression, acquire genetic changes, remain long-term dependent on LT and ErbB2 and are nontumorigenic. Despite these similarities, N-LT and C-LT cells cultured in selection medium show different growth characteristics in 3D culture and in vivo tumorigenesis. Thus, CMECs are under a comparable in vitro selective pressure in conventional monolayer culture as NMECs despite their in vivo malignancy. This data demonstrate that most primary breast cancer cells are still unable to overcome the in vitro growth restrictions and suggest that the relationship of in vitro immortalization and in vivo carcinogenesis should be re-evaluated.


Asunto(s)
Antígenos Transformadores de Poliomavirus/inmunología , Neoplasias de la Mama/patología , Glándulas Mamarias Humanas/patología , Animales , Antígenos Transformadores de Poliomavirus/genética , Western Blotting , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/inmunología , Medios de Cultivo , Regulación hacia Abajo , Citometría de Flujo , Humanos , Integrasas/genética , Glándulas Mamarias Humanas/enzimología , Glándulas Mamarias Humanas/inmunología , Ratones , Repeticiones de Microsatélite/genética , ARN Interferente Pequeño , Telomerasa/metabolismo , Telómero , Células Tumorales Cultivadas
14.
Kidney Int ; 61(2): 502-15, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11849390

RESUMEN

BACKGROUND: Tumor necrosis factor (TNF)-alpha rapidly primes neutrophils (PMN) for an anti-neutrophil cytoplasmic antibody (ANCA)-induced respiratory burst and is thus proinflammatory. TNF-alpha also progressively accelerates apoptosis. We investigated the effect of TNF-alpha-mediated apoptosis on ANCA antigen expression and on ANCA-induced superoxide generation in human PMN. METHODS: PMN were brought to apoptosis by 10 ng/mL of TNF-alpha or a combination of TNF-alpha and 2.5 microg/mL cycloheximide, a protein synthesis inhibitor, or cycloheximide alone for three hours. Apoptosis and ANCA antigen expression were assessed by fluorescence-activated cell sorting (FACS) and microscopy. Superoxide was determined with the ferricytochrome C assay. RESULTS: TNF-alpha with cycloheximide for three hours caused apoptosis in 87% PMN compared to 2% in untreated controls (N=18; P < 0.01). Accelerated apoptosis was associated with an increase in ANCA-antigen expression for both proteinase 3 and myeloperoxidase (P < 0.05). Nevertheless, apoptosis was paralleled by a decreased proteinase 3 and myeloperoxidase ANCA-induced respiratory burst (P < 0.05). Furthermore, superoxide release in response to immune complexes, phorbol ester (PMA), and bacterial peptide (FMLP) was significantly decreased. Blocking caspase-3 activity prevented apoptosis in TNF-alpha with cycloheximide-treated cells (83% to 2%) and prevented compromised respiratory burst in response to ANCA. Caspase-3 inhibition abrogated apoptosis-mediated ANCA antigen up-regulation (PR3 141.6 +/- 34.1 MFI to 33.9 +/- 7.8; MPO 48.3 +/- 12.9 MFI to 11.9 +/- 3.2, N=6, P < 0.05). CONCLUSIONS: TNF-alpha-accelerated apoptosis was associated with increased ANCA antigen expression but with down-regulated respiratory burst activity in response to ANCA. Specific inhibition of apoptosis by caspase-3 blockade prevented the increase in ANCA-antigen expression and preserved the capability of generating superoxide, thereby establishing a causative role for apoptosis. We suggest that TNF-alpha exhibits dual actions by both priming and terminating ANCA-mediated activation of human PMN.


Asunto(s)
Anticuerpos Anticitoplasma de Neutrófilos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Neutrófilos/citología , Factor de Necrosis Tumoral alfa/farmacología , Clorometilcetonas de Aminoácidos/farmacología , Apoptosis/inmunología , Caspasa 3 , Inhibidores de Caspasas , Membrana Celular/metabolismo , Cicloheximida/farmacología , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Humanos , Técnicas In Vitro , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Inhibidores de la Síntesis de la Proteína/farmacología , Estallido Respiratorio/efectos de los fármacos , Estallido Respiratorio/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA