Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
BMC Vet Res ; 20(1): 242, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831422

RESUMEN

BACKGROUND: ATPase activity and the antioxidant function of intestinal tissue can reflect intestinal cell metabolic activity and oxidative damage, which might be related to intestinal function. However, the specific influence of intestinal ATPase activity and antioxidant function on growth performance, feed conversion efficiency, and the intestinal microbiota in sheep remains unclear. RESULTS: This study analyzed the correlation between ATPase activity and antioxidant function in the jejunum of 92 Hu sheep and their growth performance and feed conversion efficiency. Additionally, individuals with the highest (H group) and lowest (L group) jejunum MDA content and Na+ K+-ATPase activity were further screened, and the effects of jejunum ATPase activity and MDA content on the morphology and microbial community of sheep intestines were analyzed. There was a significant correlation between jejunum ATPase and SOD activity and the initial weight of Hu sheep (P < 0.01). The H-MDA group exhibited significantly higher average daily gain (ADG) from 0 to 80 days old and higher body weight (BW) after 80 days. ATPase and SOD activities, and MDA levels correlated significantly and positively with heart weight. The jejunum crypt depth and circular muscle thickness in the H-ATP group were significantly higher than in the L-ATP group, and the villus length, crypt depth, and longitudinal muscle thickness in the H-MDA group were significantly higher than in the L-MDA group (P < 0.01). High ATPase activity and MDA content significantly reduced the jejunum microbial diversity, as indicated by the Chao1 index and observed species, and affected the relative abundance of specific taxa. Among species, the relative abundance of Olsenella umbonata was significantly higher in the H-MDA group than in the L-MDA group (P < 0.05), while Methanobrevibacter ruminantium abundance was significantly lower than in the L-MDA group (P < 0.05). In vitro culture experiments confirmed that MDA promoted the proliferation of Olsenella umbonata. Thus, ATPase and SOD activities in the jejunum tissues of Hu sheep are predominantly influenced by congenital factors, and lambs with higher birth weights exhibit lower Na+ K+-ATPase, Ca2+ Mg2+-ATPase, and SOD activities. CONCLUSIONS: The ATPase activity and antioxidant performance of intestinal tissue are closely related to growth performance, heart development, and intestinal tissue morphology. High ATPase activity and MDA content reduced the microbial diversity of intestinal tissue and affect the relative abundance of specific taxa, representing a potential interaction between the host and its intestinal microbiota.


Asunto(s)
Adenosina Trifosfatasas , Antioxidantes , Microbioma Gastrointestinal , Yeyuno , Animales , Yeyuno/microbiología , Yeyuno/enzimología , Antioxidantes/metabolismo , Microbioma Gastrointestinal/fisiología , Adenosina Trifosfatasas/metabolismo , Ovinos , Masculino , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo
2.
Cancer Lett ; 592: 216921, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38705565

RESUMEN

Cholangiocarcinoma (CCA), an exceptionally aggressive malignancy originating from the epithelium of the bile duct, poses a formidable challenge in cancer research and clinical management. Currently, attention is focused on exploring the oncogenic role and prognostic implications associated with Bmi1 in the context of CCA. In our study, we assessed the correlation of Bmi1 and Foxn2 expression across all types of CCA and evaluated their prognostic significance. Our results demonstrated that Bmi1 exhibits significantly upregulated expression in CCA tissues, while Foxn2 expression shows an inverse pattern. Simultaneously, the high expression of Bmi1, coupled with the low expression of Foxn2, indicates an unfavorable prognosis. Through in vitro and in vivo experiments, we confirmed the crucial role of Foxn2 in the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) of CCA. Mechanistically, Bmi1 promotes the ubiquitination of histone H2A (H2AUb), leading to chromatin opening attenuation and a decrease in Foxn2 expression, ultimately driving CCA progression. Additionally, we described the potential value of Bmi1 and H2AUb inhibitors in treating CCA through in vitro experiments and orthotopic models. This study is of significant importance in deepening our understanding of the interaction between Bmi1 and Foxn2 in CCA and has the potential to advance the development of precision therapies for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Proliferación Celular , Colangiocarcinoma , Progresión de la Enfermedad , Factores de Transcripción Forkhead , Regulación Neoplásica de la Expresión Génica , Histonas , Complejo Represivo Polycomb 1 , Ubiquitinación , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Humanos , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/genética , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Animales , Histonas/metabolismo , Línea Celular Tumoral , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Ratones , Masculino , Pronóstico , Transición Epitelial-Mesenquimal , Femenino , Ratones Desnudos
3.
Front Immunol ; 15: 1366928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601163

RESUMEN

Background: Early research indicates that cancer patients are more vulnerable to adverse outcomes and mortality when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, the specific attributes of SARS-CoV-2 in lung Adenocarcinoma (LUAD) have not been extensively and methodically examined. Methods: We acquired 322 SARS-CoV-2 infection-related genes (CRGs) from the Human Protein Atlas database. Using an integrative machine learning approach with 10 algorithms, we developed a SARS-CoV-2 score (Cov-2S) signature across The Cancer Genome Atlas and datasets GSE72094, GSE68465, and GSE31210. Comprehensive multi-omics analysis, including assessments of genetic mutations and copy number variations, was conducted to deepen our understanding of the prognosis signature. We also analyzed the response of different Cov-2S subgroups to immunotherapy and identified targeted drugs for these subgroups, advancing personalized medicine strategies. The expression of Cov-2S genes was confirmed through qRT-PCR, with GGH emerging as a critical gene for further functional studies to elucidate its role in LUAD. Results: Out of 34 differentially expressed CRGs identified, 16 correlated with overall survival. We utilized 10 machine learning algorithms, creating 101 combinations, and selected the RFS as the optimal algorithm for constructing a Cov-2S based on the average C-index across four cohorts. This was achieved after integrating several essential clinicopathological features and 58 established signatures. We observed significant differences in biological functions and immune cell statuses within the tumor microenvironments of high and low Cov-2S groups. Notably, patients with a lower Cov-2S showed enhanced sensitivity to immunotherapy. We also identified five potential drugs targeting Cov-2S. In vitro experiments revealed a significant upregulation of GGH in LUAD, and its knockdown markedly inhibited tumor cell proliferation, migration, and invasion. Conclusion: Our research has pioneered the development of a consensus Cov-2S signature by employing an innovative approach with 10 machine learning algorithms for LUAD. Cov-2S reliably forecasts the prognosis, mirrors the tumor's local immune condition, and supports clinical decision-making in tumor therapies.


Asunto(s)
Adenocarcinoma del Pulmón , COVID-19 , Neoplasias Pulmonares , Humanos , SARS-CoV-2/genética , Variaciones en el Número de Copia de ADN , COVID-19/genética , Pronóstico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Microambiente Tumoral/genética
4.
Gut ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38458750

RESUMEN

OBJECTIVE: The correlation between cholangiocarcinoma (CCA) progression and bile is rarely studied. Here, we aimed to identify differential metabolites in benign and malignant bile ducts and elucidate the generation, function and degradation of bile metabolites. DESIGN: Differential metabolites in the bile from CCA and benign biliary stenosis were identified by metabonomics. Biliary molecules able to induce mast cell (MC) degranulation were revealed by in vitro and in vivo experiments, including liquid chromatography-mass spectrometry (MS)/MS and bioluminescence resonance energy transfer assays. Histamine (HA) receptor expression in CCA was mapped using a single-cell mRNA sequence. HA receptor functions were elucidated by patient-derived xenografts (PDX) in humanised mice and orthotopic models in MC-deficient mice. Genes involved in HA-induced proliferation were screened by CRISPR/Cas9. RESULTS: Bile HA was elevated in CCA and indicated poorer prognoses. Cancer-associated fibroblasts (CAFs)-derived stem cell factor (SCF) recruited MCs, and bile N,N-dimethyl-1,4-phenylenediamine (DMPD) stimulated MCs to release HA through G protein-coupled receptor subtype 2 (MRGPRX2)-Gαq signalling. Bile-induced MCs released platelet-derived growth factor subunit B (PDGF-B) and angiopoietin 1/2 (ANGPT1/2), which enhanced CCA angiogenesis and lymphangiogenesis. Histamine receptor H1 (HRH1) and HRH2 were predominantly expressed in CCA cells and CAFs, respectively. HA promoted CCA cell proliferation by activating HRH1-Gαq signalling and hastened CAFs to secrete hepatocyte growth factor by stimulating HRH2-Gαs signalling. Solute carrier family 22 member 3 (SLC22A3) inhibited HA-induced CCA proliferation by importing bile HA into cells for degradation, and SLC22A3 deletion resulted in HA accumulation. CONCLUSION: Bile HA is released from MCs through DMPD stimulation and degraded via SLC22A3 import. Different HA receptors exhibit a distinct expression profile in CCA and produce different oncogenic effects. MCs promote CCA progression in a CCA-bile interplay pattern.

5.
Nat Cell Biol ; 26(1): 124-137, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168770

RESUMEN

The gut microbiota play a pivotal role in human health. Emerging evidence indicates that gut microbes participate in the progression of tumorigenesis through the generation of carcinogenic metabolites. However, the underlying molecular mechanism is largely unknown. In the present study we show that a tryptophan metabolite derived from Peptostreptococcus anaerobius, trans-3-indoleacrylic acid (IDA), facilitates colorectal carcinogenesis. Mechanistically, IDA acts as an endogenous ligand of an aryl hydrocarbon receptor (AHR) to transcriptionally upregulate the expression of ALDH1A3 (aldehyde dehydrogenase 1 family member A3), which utilizes retinal as a substrate to generate NADH, essential for ferroptosis-suppressor protein 1(FSP1)-mediated synthesis of reduced coenzyme Q10. Loss of AHR or ALDH1A3 largely abrogates IDA-promoted tumour development both in vitro and in vivo. It is interesting that P. anaerobius is significantly enriched in patients with colorectal cancer (CRC). IDA treatment or implantation of P. anaerobius promotes CRC progression in both xenograft model and ApcMin/+ mice. Together, our findings demonstrate that targeting the IDA-AHR-ALDH1A3 axis should be promising for ferroptosis-related CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Ferroptosis/genética , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología
6.
Hepatology ; 79(2): 307-322, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37140231

RESUMEN

BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary ducts. Current CCA diagnostic and prognostic assessments cannot satisfy the clinical requirement. Bile detection is rarely performed, and herein, we aim to estimate the clinical significance of bile liquid biopsy by assessing bile exosomal concentrations and components. APPROACH RESULTS: Exosomes in bile and sera from CCA, pancreatic cancer, and common bile duct stone were identified and quantified by transmission electronmicroscopy, nanoparticle tracking analysis, and nanoFCM. Exosomal components were assessed by liquid chromatography with tandem mass spectrometry and microRNA sequencing (miRNA-seq). Bile exosomal concentration in different diseases had no significant difference, but miR-182-5p and miR-183-5p were ectopically upregulated in CCA bile exosomes. High miR-182/183-5p in both CCA tissues and bile indicates a poor prognosis. Bile exosomal miR-182/183-5p is secreted by CCA cells and can be absorbed by biliary epithelium or CCA cells. With xenografts in humanized mice, we showed that bile exosomal miR-182/183-5p promotes CCA proliferation, invasion, and epithelial-mesenchymal transition (EMT) by targeting hydroxyprostaglandin dehydrogenase in CCA cells and mast cells (MCs), and increasing prostaglandin E2 generation, which stimulates PTGER1 and increases CCA stemness. In single-cell mRNA-seq, hydroxyprostaglandin dehydrogenase is predominantly expressed in MCs. miR-182/183-5p prompts MC to release VEGF-A release from MC by increasing VEGF-A expression, which facilitates angiogenesis. CONCLUSIONS: CCA cells secret exosomal miR-182/183-5p into bile, which targets hydroxyprostaglandin dehydrogenase in CCA cells and MCs and increases prostaglandin E2 and VEGF-A release. Prostaglandin E2 promotes stemness by activating PTGER1. Our results reveal a type of CCA self-driven progression dependent on bile exosomal miR-182/183-5p and MCs, which is a new interplay pattern of CCA and bile.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , MicroARNs , Humanos , Animales , Ratones , Dinoprostona , MicroARNs/genética , Bilis/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología , Hidroxiprostaglandina Deshidrogenasas/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
7.
Hepatology ; 79(4): 798-812, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505213

RESUMEN

ABSTRACT AND AIM: Cholangiocarcinoma (CCA) is a highly aggressive and lethal cancer that originates from the biliary epithelium. Systemic treatment options for CCA are currently limited, and the first targeted drug of CCA, pemigatinib, emerged in 2020 for CCA treatment by inhibiting FGFR2 phosphorylation. However, the regulatory mechanism of FGFR2 phosphorylation is not fully elucidated. APPROACH AND RESULTS: Here we screened the FGFR2-interacting proteins and showed that protein tyrosine phosphatase (PTP) N9 interacts with FGFR2 and negatively regulates FGFR2 pY656/657 . Using phosphatase activity assays and modeling the FGFR2-PTPN9 complex structure, we identified FGFR2 pY656/657 as a substrate of PTPN9, and found that sec. 14p domain of PTPN9 interacts with FGFR2 through ACAP1 mediation. Coexpression of PTPN9 and ACAP1 indicates a favorable prognosis for CCA. In addition, we identified key amino acids and motifs involved in the sec. 14p-APCP1-FGFR2 interaction, including the "YRETRRKE" motif of sec. 14p, Y471 of PTPN9, as well as the PH and Arf-GAP domain of ACAP1. Moreover, we discovered that the FGFR2 I654V substitution can decrease PTPN9-FGFR2 interaction and thereby reduce the effectiveness of pemigatinib treatment. Using a series of in vitro and in vivo experiments including patient-derived xenografts (PDX), we showed that PTPN9 synergistically enhances pemigatinib effectiveness and suppresses CCA proliferation, migration, and invasion by inhibiting FGFR2 pY656/657 . CONCLUSIONS: Our study identifies PTPN9 as a negative regulator of FGFR2 phosphorylation and a synergistic factor for pemigatinib treatment. The molecular mechanism, oncogenic function, and clinical significance of the PTPN9-ACAP1-FGFR2 complex are revealed, providing more evidence for CCA precision treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Morfolinas , Pirimidinas , Pirroles , Humanos , Colangiocarcinoma/tratamiento farmacológico , Epitelio , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Proteínas Activadoras de GTPasa
8.
EJVES Vasc Forum ; 60: 73-76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928168

RESUMEN

Introduction: Hepatic hereditary haemorrhagic telangiectasia (HHHT) is a rare autosomal dominant genetic disease. Some patients may develop cardiac failure, portal hypertension, and biliary ischaemia. To date, there is no standard surgical treatment for HHHT. The present authors propose a move from open to laparoscopic surgery; however, laparoscopic surgery has not been reported previously as a surgical treatment for HHHT. Report: Two women were admitted with histories of exertional dyspnoea and upper abdominal pain, respectively. Combined with recurrent epistaxis and their positive family history, a diagnosis of clinical HHHT was made based on Curacao criteria after comprehensive evaluation of imaging features. Next generation sequencing (NGS) results also confirmed typical gene mutations responsible for HHT. Both patients underwent laparoscopic double hepatic artery banding and or ligation successfully and were discharged four to six days after operation without severe complications. The symptoms of cardiac insufficiency including exertional dyspnoea and shortness of breath of the first patient improved six months after the operation. The second patient, with epigastric pain, remained pain free without medication three months after the operation. Discussion: Laparoscopic surgery for HHHT is technically challenging. Clinical data and follow up information showed that laparoscopic double hepatic artery banding and or ligation was a technically feasible surgical approach for HHHT patients with simple hepatic artery dilation.

9.
Cancer Med ; 12(23): 21293-21307, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986544

RESUMEN

BACKGROUND: Glypican-3 (GPC3) is highly expressed in testicular yolk sac tumor (TYST). GPC3 has been evaluated as a cancer vaccine for some types of tumors, but little is known on the effects of GPC3 peptide-based therapy on TYST. Here, we evaluated the antitumor effect of GPC3144-152 on TYST and its potential mechanisms. METHODS: GPC3144-152 -specific CD8+ T cells were induced by vaccine immunization and examined by ELISPOT. The CD8+ T cells were purified for testing their cytotoxicity in vitro against TYST cells by CCK-8 and TUNEL assays and in vivo against tumor growth. The influence of GPC3144-152 loading and/or cGAS silencing on the tumor growth, apoptosis and cGAS/STING signaling was tested by immunohistochemistry, immunofluorescence, flow cytometry, and Western blot. RESULTS: Vaccination with GPC3144-152 induced tumor-specific CD8+ T cells that secreted high levels of IFN-γ and granzyme B, and had potent cytotoxicity against TYST in a dose-dependent manner. Adoptive transfer of CD8+ T cells and treatment with GPC3144-152 significantly inhibited the growth of TYST tumors, but less effective for cGAS-silenced TYST tumors in vivo. Treatment with GPC3144-152 enhanced the infiltration of CD8+ T cells into the tumor environment and their cytotoxicity against TYST tumors in vivo by up-regulating granzyme B and IFN-ß expression, but down-regulating GPC3 expression in the tumors. Co-culture of CD8+ T cells with TYST in the presence of exogenous GPC3144-152 enhanced peptide-specific CD8+ T-cell cytotoxicity in vitro, accompanied by enhancing cGAS, γH2AX, TBK1, and IRF3 phosphorylation in TYST cells, but less effective in cGAS-silenced TYST cells. CONCLUSIONS: These data indicated that GPC3 peptide-specific CD8+ T cells had potent antitumor activity against TYST tumor, particularly for combined treatment with the peptide, which was partially dependent on the intratumoral cGAS/STNG signaling. GPC3 peptide vaccine may be valuable for the combination treatment of TYST.


Asunto(s)
Tumor del Seno Endodérmico , Neoplasias Testiculares , Masculino , Humanos , Linfocitos T CD8-positivos , Granzimas/metabolismo , Tumor del Seno Endodérmico/metabolismo , Glipicanos/metabolismo , Péptidos/metabolismo , Neoplasias Testiculares/metabolismo , Nucleotidiltransferasas
10.
Nature ; 624(7992): 672-681, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935376

RESUMEN

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sitios de Unión , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Ligandos , Simulación de Dinámica Molecular , Mutación , Polifarmacología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Especificidad de la Especie , Especificidad por Sustrato
11.
Front Immunol ; 14: 1233260, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799714

RESUMEN

Background: Disulfidptosis is a newly identified variant of cell death characterized by disulfide accumulation, which is independent of ATP depletion. Accordingly, the latent influence of disulfidptosis on the prognosis of lung adenocarcinoma (LUAD) patients and the progression of tumors remains poorly understood. Methods: We conducted a multifaceted analysis of the transcriptional and genetic modifications in disulfidptosis regulators (DRs) specific to LUAD, followed by an evaluation of their expression configurations to define DR clusters. Harnessing the differentially expressed genes (DEGs) identified from these clusters, we formulated an optimal predictive model by amalgamating 10 distinct machine learning algorithms across 101 unique combinations to compute the disulfidptosis score (DS). Patients were subsequently stratified into high and low DS cohorts based on median DS values. We then performed an exhaustive comparison between these cohorts, focusing on somatic mutations, clinical attributes, tumor microenvironment, and treatment responsiveness. Finally, we empirically validated the biological implications of a critical gene, KYNU, through assays in LUAD cell lines. Results: We identified two DR clusters and there were great differences in overall survival (OS) and tumor microenvironment. We selected the "Least Absolute Shrinkage and Selection Operator (LASSO) + Random Survival Forest (RFS)" algorithm to develop a DS based on the average C-index across different cohorts. Our model effectively stratified LUAD patients into high- and low-DS subgroups, with this latter demonstrating superior OS, a reduced mutational landscape, enhanced immune status, and increased sensitivity to immunotherapy. Notably, the predictive accuracy of DS outperformed the published LUAD signature and clinical features. Finally, we validated the DS expression using clinical samples and found that inhibiting KYNU suppressed LUAD cells proliferation, invasiveness, and migration in vitro. Conclusions: The DR-based scoring system that we developed enabled accurate prognostic stratification of LUAD patients and provides important insights into the molecular mechanisms and treatment strategies for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Adenocarcinoma del Pulmón/genética , Algoritmos , Aprendizaje Automático , Neoplasias Pulmonares/genética , Microambiente Tumoral
13.
Neural Regen Res ; 18(12): 2638-2644, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37449602

RESUMEN

Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome. Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections, such as urinary tract infections and stroke-associated pneumonia, worsening prognosis. Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains, refolding misfolded proteins, and targeting misfolded proteins for degradation. Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones, cochaperones, and their associated pathways. This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.

14.
Aging (Albany NY) ; 15(10): 4202-4235, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37199651

RESUMEN

Abnormal fatty acid (FA) metabolism can change the inflammatory microenvironment and promote tumor progression and metastasis, however, the potential association between FA-related genes (FARGs) and lung adenocarcinoma (LUAD) is still unclear. In this study, we described the genetic and transcriptomic changes of FARGs in LUAD patients and identified two different FA subtypes, which were significantly correlated with overall survival and tumor microenvironment infiltrating cells in LUAD patients. In addition, the FA score was also constructed through the LASSO Cox to evaluate the FA dysfunction of each patient. Multivariate Cox analysis proved that the FA score was an independent predictor and created the FA score integrated nomogram, which offered a quantitative tool for clinical practice. The performance of the FA score has been substantiated in numerous datasets for its commendable accuracy in estimating overall survival in LUAD patients. The groups with high and low FA scores exhibited different mutation spectrums, copy number variations, enrichment pathways, and immune status. Noteworthy differences between the two groups in terms of immunophenoscore and Tumor Immune Dysfunction and Exclusion were observed, suggesting that the group with a low FA score was more responsive to immunotherapy, and similar results were also confirmed in the immunotherapy cohort. In addition, seven potential chemotherapeutic drugs related to FA score targeting were predicted. Ultimately, we ascertained that the attenuation of KRT6A expression impeded the proliferation, migration, and invasion of LUAD cell lines. In summary, this research offers novel biomarkers to facilitate prognostic forecasting and clinical supervision for individuals afflicted with LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Variaciones en el Número de Copia de ADN , Adenocarcinoma del Pulmón/genética , Ácidos Grasos , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
15.
Int J Mol Med ; 51(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37083073

RESUMEN

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that the ß-actin bands data shown to portray the control experiments in the western blots in Fig. 3C and 4F were apparently identical. The authors have re­examined their data, and realize that the control bands in Fig. 3C had inadvertently been selected incorrectly. The revised version of Fig. 3, containing the correct ß-actin bands in Fig. 3C, is shown below. Note that this error did not affect the major conclusions reported in the paper. All the authors agree with the publication of this corrigendum, and thank the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish this. The authors regret this mistake went unnoticed during the compilation of the figure in question, and apologize to the readership for any confusion that this may have caused. [International Journal of Molecular Medicine 33: 1319­1326, 2014; DOI: 10.3892/ijmm.2014.1673].

16.
Viruses ; 15(4)2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37112900

RESUMEN

Glycoprotein non-metastatic melanoma protein B (GPNMB) is a transmembrane protein enriched on the surface of some cells, including melanoma, glioblastoma, and macrophages. GPNMB has been reported to have multifaceted roles, such as facilitating cell-cell adhesion and migration, stimulating kinase signaling, and regulating inflammation. Porcine reproductive and respiratory syndrome virus (PRRSV) is the leading cause of severe economic loss in the swine industry worldwide. In this study, the role of GPNMB was investigated in porcine alveolar macrophages during PRRSV infection. We observed that GPNMB expression was markedly reduced in PRRSV-infected cells. The inhibition of GPNMB by specific small interfering RNA led to an enhancement in virus yields, and GPNMB overexpression decreased PRRSV replication. Further studies revealed that the overexpression of GPNMB could induce the accumulation of autophagosome through inhibiting autophagosome-lysosome fusion. Using a specific inhibitor, we confirmed that the inhibition of autophagosome-lysosome fusion significantly inhibited viral replication. Taken together, our data demonstrate that GPNMB inhibits PRRSV replication by inhibiting the autophagosome-lysosome fusion and provides a novel therapeutic target for virus infection.


Asunto(s)
Melanoma , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Autofagosomas , Línea Celular , Glicoproteínas , Replicación Viral/fisiología , Lisosomas
17.
J Clin Med ; 12(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675655

RESUMEN

BACKGROUND: Our study aimed to explore the prognostic factors of bladder cancer with bone metastasis (BCBM) and develop prediction models to predict the overall survival (OS) and cancer-specific survival (CSS) of BCBM patients. METHODS: A total of 1438 patients with BCBM were obtained from the SEER database. Patients from 2010 to 2016 were randomly divided into training and validation datasets (7:3), while patients from 2017 were divided for external testing. Nomograms were established using prognostic factors identified through Cox regression analyses and validated internally and externally. The concordance index (C-index), calibration plots, and time-dependent receiver operating characteristic (ROC) curves were used to evaluate the discrimination and calibration of nomogram models, while decision curve analyses (DCA) and Kaplan-Meier (KM) curves were used to estimate the clinical applicability. RESULTS: Marital status, tumor metastasis (brain, liver, and lung), primary site surgery, and chemotherapy were indicated as independent prognostic factors for OS and CSS. Calibration plots and the overall C-index showed a novel agreement between the observed and predicted outcomes. Nomograms revealed significant advantages in OS and CSS predictions. AUCs for internal and external validation were listed as follows: for OS, 3-month AUCs were 0.853 and 0.849; 6-month AUCs were 0.873 and 0.832; 12-month AUCs were 0.825 and 0.805; for CSS, 3-month AUCs were 0.849 and 0.847; 6-month AUCs were 0.870 and 0.824; 12-month AUCs were 0.815 and 0.797, respectively. DCA curves demonstrated good clinical benefit, and KM curves showed distinct stratification performance. CONCLUSION: The nomograms as web-based tools were proved to be accurate, efficient, and clinically beneficial, which might help in patient management and clinical decision-making for BCBM patients.

18.
Clin Chim Acta ; 541: 117235, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716909

RESUMEN

Early and differential diagnosis of perihilar cholangiocarcinoma (PHCCA) is highly challenging. This study aimed to evaluate whether volatile organic compounds (VOCs) in bile samples could be emerging diagnostic biomarkers for PHCCA. We collected 200 bile samples from patients with PHCCA and benign biliary diseases (BBD), including a 140-patient training cohort and an 60-patient test cohort. Gas chromatography-ion mobility spectrometry (GC-IMS) was used for VOCs detection. The predictive models were constructed using machine learning algorithms. Our analysis detected 19 VOC substances using GC-IMS in the bile samples and resulted in the identification of three new VOCs, 2-methoxyfuran, propyl isovalerate, and diethyl malonate that were found in bile. Unsupervised hierarchical clustering analysis supported that VOCs detected in the bile could distinguish PHCCA from BBD. Twelve VOCs defined according to 32 signal peaks had significant statistical significance between BBD and PHCCA, including four up-regulated VOCs in PHCCA, such as 2-ethyl-1-hexanol, propyl isovalerate, cyclohexanone, and acetophenone, while the rest eight VOCs were down-regulated. ROC curve analysis revealed that machine learning models based on VOCs could help diagnosing PHCCA. Among them, SVM provided the highest AUC of 0·966, with a sensitivity and specificity of 93·1% and 100%, respectively. The diagnostic model based on different VOC spectra could be a feasible method for the differential diagnosis of PHCCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Tumor de Klatskin , Compuestos Orgánicos Volátiles , Humanos , Tumor de Klatskin/diagnóstico , Compuestos Orgánicos Volátiles/análisis , Bilis/química , Diagnóstico Diferencial , Cromatografía de Gases y Espectrometría de Masas , Neoplasias de los Conductos Biliares/diagnóstico
19.
Mol Biol Rep ; 50(2): 1655-1661, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36385663

RESUMEN

Ferroptosis is newly identified as a non-apoptotic form of programmed cell death. It is characterized by iron-dependent intracellular accumulation of lipid peroxides which ultimately leads to oxidative stress and cell death. Ferroptosis has been identified in several diseases, such as cancer, renal failure, liver injury, and ischemia-reperfusion injury. Besides, it has been reported to be involved in the pathological mechanism of neurodegenerative diseases (NDD). In addition, interventions targeting ferroptosis can influence the course of NDD, making it a potential therapeutic target for NDD. By summarizing the current research on ferroptosis and its impact on many neurological diseases, we hope to provide valuable strategies for the underlying mechanisms and treatment of these neurological diseases.


Asunto(s)
Ferroptosis , Enfermedades Neurodegenerativas , Humanos , Ferroptosis/genética , Apoptosis , Muerte Celular , Estrés Oxidativo/fisiología
20.
Cell Mol Neurobiol ; 43(1): 205-222, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35102454

RESUMEN

Stroke is a common and serious nervous system disease caused by the rupture or blockage of the cardiovascular system. It causes millions of deaths and disabilities every year, which is a huge burden on humanity. It may be induced by thrombosis, hypertension, hyperlipidemia, hyperglycemia, smoking, advanced age and so on. According to different causes, stroke can be generally divided into hemorrhagic stroke and ischemic stroke, whose pathogenesis and treatment are quite different. Ferroptosis is a new type of cell death first defined in 2012, which is characterized by non-apoptotic, iron-dependent, and over-accumulated lipid peroxides. Excess lipid reactive oxygen species produced during ferroptosis eventually leads to oxidative cell death. Ferroptosis has been shown to occur and play an important role in tumors, neurological diseases, kidney injury, and ischemia-reperfusion injury. Ferroptosis is also closely related to the pathogenesis of stroke. Moreover, scientists have successfully intervened in the process of stroke in animal models by regulating ferroptosis, indicating that ferroptosis is a new potential target for the treatment of stroke. This paper systematically summarizes the involvement and role of ferroptosis in the pathogenesis of stroke and predicts the potential of ferroptosis in the treatment of stroke. Ferroptosis in stroke. Stroke induces iron overload and lipid metabolism disorders. Elevated iron catalyzes lipid peroxidation and eventually triggers ferroptosis. Conversely, the GSH/GPX4 pathway, as well as CoQ10, Fer-1, and Lip-1, inhibits lipid peroxidation and, thus, alleviates ferroptosis. GSH glutathione; GPX4 glutathione peroxidase 4; CoQ10 coenzyme Q10; Lip-1 liproxstatin-1; Fer-1 ferostatin-1.


Asunto(s)
Ferroptosis , Enfermedades del Sistema Nervioso , Accidente Cerebrovascular , Animales , Muerte Celular/fisiología , Peroxidación de Lípido/fisiología , Hierro/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA