Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cell Death Dis ; 15(7): 541, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080260

RESUMEN

Esophageal squamous cell carcinoma (ESCC) possesses a poor prognosis and treatment outcome. Dysregulated metabolism contributes to unrestricted growth of multiple cancers. However, abnormal metabolism, such as highly activated pentose phosphate pathway (PPP) in the progression of ESCC remains largely unknown. Herein, we report that high-mobility group AT-hook 1 (HMGA1), a structural transcriptional factor involved in chromatin remodeling, promoted the development of ESCC by upregulating the PPP. We found that HMGA1 was highly expressed in ESCC. Elevated HMGA1 promoted the malignant phenotype of ESCC cells. Conditional knockout of HMGA1 markedly reduced 4-nitroquinoline-1-oxide (4NQO)-induced esophageal tumorigenesis in mice. Through the metabolomic analysis and the validation assay, we found that HMGA1 upregulated the non-oxidative PPP. With the transcriptome sequencing, we identified that HMGA1 upregulated the expression of transketolase (TKT), which catalyzes the reversible reaction in non-oxidative PPP to exchange metabolites with glycolytic pathway. HMGA1 knockdown suppressed the PPP by downregulating TKT, resulting in the reduction of nucleotides in ESCC cells. Overexpression of HMGA1 upregulated PPP and promoted the survival of ESCC cells by activating TKT. We further characterized that HMGA1 promoted the transcription of TKT by interacting with and enhancing the binding of transcription factor SP1 to the promoter of TKT. Therapeutics targeting TKT with an inhibitor, oxythiamine, reduced HMGA1-induced ESCC cell proliferation and tumor growth. Together, in this study, we identified a new role of HMGA1 in ESCCs by upregulating TKT-mediated activation of PPP. Our results provided a new insight into the role of HMGA1/TKT/PPP in ESCC tumorigenesis and targeted therapy.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteína HMGA1a , Vía de Pentosa Fosfato , Transcetolasa , Regulación hacia Arriba , Humanos , Animales , Transcetolasa/metabolismo , Transcetolasa/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Ratones , Regulación hacia Arriba/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Ratones Desnudos , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética
2.
Biomed Pharmacother ; 177: 117079, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968801

RESUMEN

Macrophages are widely distributed throughout various tissues of the body, and mounting evidence suggests their involvement in regulating the tissue microenvironment, thereby influencing disease onset and progression through direct or indirect actions. In chronic kidney disease (CKD), disturbances in renal functional homeostasis lead to inflammatory cell infiltration, tubular expansion, glomerular atrophy, and subsequent renal fibrosis. Macrophages play a pivotal role in this pathological process. Therefore, understanding their role is imperative for investigating CKD progression, mitigating its advancement, and offering novel research perspectives for fibrosis treatment from an immunological standpoint. This review primarily delves into the intrinsic characteristics of macrophages, their origins, diverse subtypes, and their associations with renal fibrosis. Particular emphasis is placed on the transition between M1 and M2 phenotypes. In late-stage CKD, there is a shift from the M1 to the M2 phenotype, accompanied by an increased prevalence of M2 macrophages. This transition is governed by the activation of the TGF-ß1/SMAD3 and JAK/STAT pathways, which facilitate macrophage-to-myofibroblast transition (MMT). The tyrosine kinase Src is involved in both signaling cascades. By thoroughly elucidating macrophage functions and comprehending the modes and molecular mechanisms of macrophage-fibroblast interaction in the kidney, novel, tailored therapeutic strategies for preventing or attenuating the progression of CKD can be developed.


Asunto(s)
Fibrosis , Macrófagos , Insuficiencia Renal Crónica , Humanos , Macrófagos/patología , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/metabolismo , Animales , Transducción de Señal , Riñón/patología , Riñón/metabolismo , Progresión de la Enfermedad , Fenotipo
3.
Cancer Lett ; 595: 217025, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38844063

RESUMEN

Despite the confirmed role of LKB1 in suppressing lung cancer progression, its precise effect on cellular senescence is unknown. The aim of this research was to clarify the role and mechanism of LKB1 in restraining telomerase activity in lung adenocarcinoma. The results showed that LKB1 induced cellular senescence and apoptosis either in vitro or in vivo. Overexpression of LKB1 in LKB1-deficient A549 cells led to the inhibition of telomerase activity and the induction of telomere dysfunction by regulating telomerase reverse transcriptase (TERT) expression in terms of transcription. As a transcription factor, Sp1 mediated TERT inhibition after LKB1 overexpression. LKB1 induced lactate production and inhibited histone H4 (Lys8) and H4 (Lys16) lactylation, which further altered Sp1-related transcriptional activity. The telomerase inhibitor BIBR1532 was beneficial for achieving the optimum curative effect of traditional chemotherapeutic drugs accompanied by the glycolysis inhibitor 2DG. These data reveal a new mechanism by which LKB1 regulates telomerase activity through lactylation-dependent transcriptional inhibition, and therefore, provide new insights into the effects of LKB1-mediated senescence in lung adenocarcinoma. Our research has opened up new possibilities for the creation of new cancer treatments.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Adenocarcinoma del Pulmón , Senescencia Celular , Histonas , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinasas , Factor de Transcripción Sp1 , Telomerasa , Animales , Humanos , Ratones , Células A549 , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Senescencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética , Telomerasa/metabolismo , Telomerasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Front Pharmacol ; 15: 1379166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38910895

RESUMEN

Maintaining the structural integrity of genomic chromosomal DNA is an essential role of cellular life and requires two important biological mechanisms: the DNA damage response (DDR) mechanism and telomere protection mechanism at chromosome ends. Because abnormalities in telomeres and cellular DDR regulation are strongly associated with human aging and cancer, there is a reciprocal regulation of telomeres and cellular DDR. Moreover, several drug treatments for DDR are currently available. This paper reviews the progress in research on the interaction between telomeres and cellular DNA damage repair pathways. The research on the crosstalk between telomere damage and DDR is important for improving the efficacy of tumor treatment. However, further studies are required to confirm this hypothesis.

5.
Biomed Pharmacother ; 175: 116643, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696988

RESUMEN

Accumulated alterations in metabolic control provide energy and anabolic demands for enhanced cancer cell proliferation. Exemplified by the Warburg effect, changes in glucose metabolism during cancer progression are widely recognized as a characteristic of metabolic disorders. Since telomerases are a vital factor in maintaining DNA integrity and stability, any damage threatening telomerases could have a severe impact on DNA and, subsequently, whole-cell homeostasis. However, it remains unclear whether the regulation of glucose metabolism in cancer is connected to the regulation of telomerase. In this review, we present the latest insights into the crosstalk between telomerase function and glucose metabolism in cancer cells. However, at this moment this subject is not well investigated that the association is mostly indirectly regulations and few explicit regulating pathways were identified between telomerase and glucose metabolism. Therefore, the information presented in this review can provide a scientific basis for further research on the detail mechanism and the clinical application of cancer therapy, which could be valuable in improving the effectiveness of chemotherapy.


Asunto(s)
Glucosa , Neoplasias , Telomerasa , Humanos , Telomerasa/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Glucosa/metabolismo , Animales
6.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725843

RESUMEN

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteína HMGA1a , Inhibidores mTOR , Proteína Proto-Oncogénica c-ets-1 , Proteína 1A de Unión a Tacrolimus , Animales , Humanos , Ratones , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Ratones Desnudos , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Sirolimus/uso terapéutico , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteína 1A de Unión a Tacrolimus/genética , Serina-Treonina Quinasas TOR/metabolismo
7.
Nat Commun ; 15(1): 2163, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461299

RESUMEN

Recent development of new immune checkpoint inhibitors has been particularly successfully in cancer treatment, but still the majority patients fail to benefit. Converting resistant tumors to immunotherapy sensitive will provide a significant improvement in patient outcome. Here we identify Mi-2ß as a key melanoma-intrinsic effector regulating the adaptive anti-tumor immune response. Studies in genetically engineered mouse melanoma models indicate that loss of Mi-2ß rescues the immune response to immunotherapy in vivo. Mechanistically, ATAC-seq analysis shows that Mi-2ß controls the accessibility of IFN-γ-stimulated genes (ISGs). Mi-2ß binds to EZH2 and promotes K510 methylation of EZH2, subsequently activating the trimethylation of H3K27 to inhibit the transcription of ISGs. Finally, we develop an Mi-2ß-targeted inhibitor, Z36-MP5, which reduces Mi-2ß ATPase activity and reactivates ISG transcription. Consequently, Z36-MP5 induces a response to immune checkpoint inhibitors in otherwise resistant melanoma models. Our work provides a potential therapeutic strategy to convert immunotherapy resistant melanomas to sensitive ones.


Asunto(s)
ADN Helicasas , Proteína Potenciadora del Homólogo Zeste 2 , Evasión Inmune , Melanoma , Animales , Humanos , Ratones , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Evasión Inmune/genética , Melanoma/tratamiento farmacológico , Metilación , ADN Helicasas/genética , ADN Helicasas/metabolismo
8.
Redox Biol ; 71: 103108, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457903

RESUMEN

High-risk human papillomaviruses (HPVs) are the causative agents of cervical cancer. Here, we report that HPV16 E6E7 promotes cervical cancer cell proliferation by activating the pentose phosphate pathway (PPP). We found that HPV16 E6 activates the PPP primarily by increasing glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. Mechanistically, HPV16 E6 promoted G6PD dimer formation by inhibiting its lactylation. Importantly, we suggest that G6PD K45 was lactylated during G6PD-mediated antioxidant stress. In primary human keratinocytes and an HPV-negative cervical cancer C33A cells line ectopically expressing HPV16 E6, the transduction of G6PD K45A (unable to be lactylated) increased GSH and NADPH levels and, correspondingly, decreasing ROS levels. Conversely, the re-expression of G6PD K45T (mimicking constitutive lactylation) in HPV16-positive SiHa cells line inhibited cell proliferation. In vivo, the inhibition of G6PD enzyme activity with 6-aminonicotinamide (6-An) or the re-expression of G6PD K45T inhibited tumor proliferation. In conclusion, we have revealed a novel mechanism of HPV oncoprotein-mediated malignant transformation. These findings might provide effective strategies for treating cervical and HPV-associated cancers.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Línea Celular Tumoral , Neoplasias del Cuello Uterino/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Vía de Pentosa Fosfato , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proliferación Celular
9.
Cell Death Dis ; 15(2): 158, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383528

RESUMEN

Chemotherapy is a primary treatment for esophageal squamous cell carcinoma (ESCC). Resistance to chemotherapeutic drugs is an important hurdle to effective treatment. Understanding the mechanisms underlying chemotherapy resistance in ESCC is an unmet medical need to improve the survival of ESCC. Herein, we demonstrate that ferroptosis triggered by inhibiting high mobility group AT-hook 1 (HMGA1) may provide a novel opportunity to gain an effective therapeutic strategy against chemoresistance in ESCC. HMGA1 is upregulated in ESCC and works as a key driver for cisplatin (DDP) resistance in ESCC by repressing ferroptosis. Inhibition of HMGA1 enhances the sensitivity of ESCC to ferroptosis. With a transcriptome analysis and following-up assays, we demonstrated that HMGA1 upregulates the expression of solute carrier family 7 member 11 (SLC7A11), a key transporter maintaining intracellular glutathione homeostasis and inhibiting the accumulation of malondialdehyde (MDA), thereby suppressing cell ferroptosis. HMGA1 acts as a chromatin remodeling factor promoting the binding of activating transcription factor 4 (ATF4) to the promoter of SLC7A11, and hence enhancing the transcription of SLC7A11 and maintaining the redox balance. We characterized that the enhanced chemosensitivity of ESCC is primarily attributed to the increased susceptibility of ferroptosis resulting from the depletion of HMGA1. Moreover, we utilized syngeneic allograft tumor models and genetically engineered mice of HMGA1 to induce ESCC and validated that depletion of HMGA1 promotes ferroptosis and restores the sensitivity of ESCC to DDP, and hence enhances the therapeutic efficacy. Our finding uncovers a critical role of HMGA1 in the repression of ferroptosis and thus in the establishment of DDP resistance in ESCC, highlighting HMGA1-based rewiring strategies as potential approaches to overcome ESCC chemotherapy resistance. Schematic depicting that HMGA1 maintains intracellular redox homeostasis against ferroptosis by assisting ATF4 to activate SLC7A11 transcription, resulting in ESCC resistance to chemotherapy.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteína HMGA1a/genética , Resistencia a Antineoplásicos/genética , Ferroptosis/genética , Proteína HMGA1b , Línea Celular Tumoral
10.
Cell Death Dis ; 15(1): 90, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278800

RESUMEN

Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.


Asunto(s)
Neoplasias , Telomerasa , Telomerasa/genética , Telomerasa/metabolismo , Senescencia Celular , Fosforilación , Telómero/genética , Telómero/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
11.
J Exp Clin Cancer Res ; 43(1): 36, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38291438

RESUMEN

BACKGROUND: Discoidin, CUB, and LCCL domain-containing type I (DCBLD1) is identified as an oncogene involved in multiple regulation of tumor progression, but specific mechanisms remain unclear in cervical cancer. Lactate-mediated lactylation modulates protein function. Whether DCBLD1 can be modified by lactylation and the function of DCBLD1 lactylation are unknown. Therefore, this study aims to investigate the lactylation of DCBLD1 and identify its specific lactylation sites. Herein, we elucidated the mechanism by which lactylation modification stabilizes the DCBLD1 protein. Furthermore, we investigated DCBLD1 overexpression activating pentose phosphate pathway (PPP) to promote the progression of cervical cancer. METHODS: DCBLD1 expression was examined in human cervical cancer cells and adjacent non-tumorous tissues using quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. In vitro and in vivo studies were conducted to investigate the impact of DCBLD1 on the progression of cervical cancer. Untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics studies were used to characterize DCBLD1-induced metabolite alterations. Western blot, immunofuorescence and transmission electron microscopy were performed to detect DCBLD1 degradation of G6PD by activating autophagy. Chromatin immunoprecipitation, dual luciferase reporter assay for detecting the mechanism by which lactate increases DCBLD1 transcription. LC-MS/MS was employed to verify specific modification sites within the DCBLD1 protein. RESULTS: We found that lactate increased DCBLD1 expression, activating the PPP to facilitate the proliferation and metastasis of cervical cancer cells. DCBLD1 primarily stimulated PPP by upregulating glucose-6-phosphate dehydrogenase (G6PD) expression and enzyme activity. The mechanism involved the increased enrichment of HIF-1α in the DCBLD1 promoter region, enhancing the DCBLD1 mRNA expression. Additionally, lactate-induced DCBLD1 lactylation stabilized DCBLD1 expression. We identified DCBLD1 as a lactylation substrate, with a predominant lactylation site at K172. DCBLD1 overexpression inhibited G6PD autophagic degradation, activating PPP to promote cervical cancer progression. In vivo, 6-An mediated inhibition of G6PD enzyme activity, inhibiting tumor proliferation. CONCLUSIONS: Our findings revealed a novel post-translational modification type of DCBDL1, emphasizing the significance of lactylation-driven DCBDL1-mediated PPP in promoting the progression of cervical cancer.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Cromatografía Liquida , Lactatos , Vía de Pentosa Fosfato , Espectrometría de Masas en Tándem , Neoplasias del Cuello Uterino/genética
12.
Gut Microbes ; 15(2): 2293312, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38087436

RESUMEN

Intestinal dysbiosis frequently occurs in abdominal radiotherapy and contributes to irradiation (IR)-induced intestinal damage and inflammation. Akkermansia muciniphila (A. muciniphila) is a recently characterized probiotic, which is critical for maintaining the dynamics of the intestinal mucus layer and preserving intestinal microbiota homeostasis. However, the role of A. muciniphila in the alleviation of radiation enteritis remains unknown. In this study, we reported that the abundance of A. muciniphila was markedly reduced in the intestines of mice exposed to abdominal IR and in the feces of patients who received abdominal radiotherapy. Abundance of A. muciniphila in feces of radiotherapy patients was negatively correlated with the duration of diarrhea in patients. Administration of A. muciniphila substantially mitigated IR-induced intestinal damage and prevented mouse death. Analyzing the metabolic products of A. muciniphila revealed that propionic acid, a short-chain fatty acid secreted by the microbe, mediated the radioprotective effect. We further demonstrated that propionic acid bound to G-protein coupled receptor 43 (GRP43) on the surface of intestinal epithelia and increased histone acetylation and hence enhanced the expression of tight junction proteins occludin and ZO-1 and elevated the level of mucins, leading to enhanced integrity of intestinal epithelial barrier and reduced radiation-induced intestinal damage. Metformin, a first-line agent for the treatment of type II diabetes, promoted intestinal epithelial barrier integrity and reduced radiation intestinal damage through increasing the abundance of A. muciniphila. Together, our results demonstrated that A. muciniphila plays a critical role in the reduction of abdominal IR-induced intestinal damage. Application of probiotics or their regulators, such as metformin, could be an effective treatment for the protection of radiation exposure-damaged intestine.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Humanos , Ratones , Animales , Intestinos , Verrucomicrobia/metabolismo
13.
Neurobiol Dis ; 181: 106114, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023830

RESUMEN

The neurovascular unit (NVU) plays an essential role in regulating neurovascular coupling, which refers to the communication between neurons, glia, and vascular cells to control the supply of oxygen and nutrients in response to neural activity. Cellular elements of the NVU coordinate to establish an anatomical barrier to separate the central nervous system from the milieu of the periphery system, restricting the free movement of substances from the blood to the brain parenchyma and maintaining central nervous system homeostasis. In Alzheimer's disease, amyloid-ß deposition impairs the normal functions of NVU cellular elements, thus accelerating the disease progression. Here, we aim to describe the current knowledge of the NVU cellular elements, including endothelial cells, pericytes, astrocytes, and microglia, in regulating the blood-brain barrier integrity and functions in physiology as well as alterations encountered in Alzheimer's disease. Furthermore, the NVU functions as a whole, therefore specific labeling and targeting NVU components in vivo enable us to understand the mechanism mediating cellular communication. We review approaches including commonly used fluorescent dyes, genetic mouse models, and adeno-associated virus vectors for imaging and targeting NVU cellular elements in vivo.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/genética , Células Endoteliales , Barrera Hematoencefálica/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Astrocitos/fisiología
15.
Front Microbiol ; 13: 932294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312920

RESUMEN

Abdominal irradiation (IR) destroys the intestinal mucosal barrier, leading to severe intestinal infection. There is an urgent need to find safe and effective treatments to reduce IR-induced intestinal injury. In this study, we reported that metformin protected mice from abdominal IR-induced intestinal injury by improving the composition and diversity of intestinal flora. The elimination of intestinal microbiota (Abx) abrogated the protective effects of metformin on irradiated mice. We further characterized that treatment of metformin increased the murine intestinal abundance of Lactobacillus, which mediated the radioprotective effect. The administration of Lactobacillus or fecal microbiota transplantation (FMT) into Abx mice considerably lessened IR-induced intestinal damage and restored the radioprotective function of metformin in Abx mice. In addition, applying the murine intestinal organoid model, we demonstrated that IR inhibited the formation of intestinal organoids, and metformin alone bore no protective effect on organoids after IR. However, a combination of metformin and Lactobacillus or Lactobacillus alone displayed a strong radioprotection on the organoid formation. We demonstrated that metformin/Lactobacillus activated the farnesoid X receptor (FXR) signaling in intestinal epithelial cells and hence upregulated tight junction proteins and mucins in intestinal epithelia, increased the number of goblet cells, and augmented the mucus layer thickness to maintain the integrity of intestinal epithelial barrier, which eventually contributed to reduced radiation intestinal injury. In addition, we found that Lactobacillus abundance was significantly increased in the intestine of patients receiving metformin while undergoing abdominal radiotherapy and the abundance was negatively correlated with the diarrhea duration of patients. In conclusion, our results demonstrate that metformin possesses a protective effect on IR-induced intestinal injury by upregulating the abundance of Lactobacillus in the intestine.

16.
Front Pharmacol ; 13: 932154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091812

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) is the only rate-limiting enzyme in the pentose phosphate pathway (PPP). Rapidly proliferating cells require metabolites from PPP to synthesize ribonucleotides and maintain intracellular redox homeostasis. G6PD expression can be abnormally elevated in a variety of cancers. In addition, G6PD may act as a regulator of viral replication and vascular smooth muscle function. Therefore, G6PD-mediated activation of PPP may promote tumor and non-neoplastic disease progression. Recently, studies have identified post-translational modifications (PTMs) as an important mechanism for regulating G6PD function. Here, we provide a comprehensive review of various PTMs (e.g., phosphorylation, acetylation, glycosylation, ubiquitination, and glutarylation), which are identified in the regulation of G6PD structure, expression and enzymatic activity. In addition, we review signaling pathways that regulate G6PD and evaluate the role of oncogenic signals that lead to the reprogramming of PPP in tumor and non-neoplastic diseases as well as summarize the inhibitors that target G6PD.

17.
Clin Nutr ; 41(10): 2333-2344, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113229

RESUMEN

The mammalian gastrointestinal tract is colonized with a majority of gut microbes, affecting host metabolism and homeostasis. Gut microbiota plays a vital role in nutrient exchange, signaling transduction between intestinal epithelial cells, and resistance to pathogen invasion. Gut microbiota is divided into mucus layer bacteria and intestinal lumen bacteria based on the colonization distribution. Akkermansia muciniphila (A. muciniphila) prefers to colonize in the intestinal mucus layer, and specifically degrades mucins to produce short-chain fatty acids, providing energy for the host and promoting colonization of the bacterium itself. Degradation of mucins prompts the host to compensate for the production of more mucins, thereby maintaining the dynamics of these proteins. In the intestinal micro-ecosystem, A. muciniphila is non-pathogenic, and its colonization with suitable abundance contributes to the development of immune system, thus promoting intestinal health. The mechanisms by which A. muciniphila bears a protective role in the host intestine are currently unclear. In this review, we summarize the microenvironment for the colonization of A. muciniphila, physiological characteristics and pathophysiological impact of A. muciniphila on intestinal diseases, such as irritable bowel syndrome, inflammatory bowel diseases, and intestinal tumors. We also provided updates for current studies on signals that A. muciniphila enhances intestinal barrier integrity and regulates immune response. Together, we conclude that A. muciniphila is a promising probiotic, which could be a microbial target for the treatment of multiple intestinal diseases.


Asunto(s)
Ecosistema , Enfermedades Inflamatorias del Intestino , Akkermansia , Animales , Ácidos Grasos Volátiles/metabolismo , Humanos , Mamíferos , Mucinas/metabolismo , Verrucomicrobia/metabolismo
18.
J Biol Chem ; 298(9): 102341, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931119

RESUMEN

Human papillomaviruses (HPVs) cause a subset of head and neck squamous cell carcinomas (HNSCCs). Previously, we demonstrated that HPV16 oncogene E6 or E6/E7 transduction increases the abundance of O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT), but OGT substrates affected by this increase are unclear. Here, we focus on the effects of O-GlcNAcylation on HPV-positive HNSCCs. We found that upon HPV infection, Unc-51-like kinase 1 (ULK1), an autophagy-initiating kinase, is hyper-O-GlcNAcylated, stabilized, and linked with autophagy elevation. Through mass spectrometry, we identified that ULK1 is O-GlcNAcylated at Ser409, which is distinct from the previously reported Thr635/Thr754 sites. It has been demonstrated that PKCα mediates phosphorylation of ULK1 at Ser423, which attenuates its stability by shunting ULK1 to the chaperone-mediated autophagy (CMA) pathway. Using biochemical assays, we demonstrate that ULK1 Ser409Ser410 O-GlcNAcylation antagonizes its phosphorylation at Ser423. Moreover, mutations of Ser409A and its neighboring site Ser410A (2A) render ULK1 less stable by promoting interaction with the CMA chaperone HSC70 (heat shock cognate 70 kDa protein). Furthermore, ULK1-2A mutants attenuate the association of ULK1 with STX17, which is vital for the fusion between autophagosomes and lysosomes. Analysis of The Cancer Genome Atlas (TCGA) database reveals that ULK1 is upregulated in HPV-positive HNSCCs, and its level positively correlates with HNSCC patient survival. Overall, our work demonstrates that O-GlcNAcylation of ULK1 is altered in response to environmental changes. O-GlcNAcylation of ULK1 at Ser409 and perhaps Ser410 stabilizes ULK1, which might underlie the molecular mechanism of HPV-positive HNSCC patient survival.


Asunto(s)
Acetilglucosamina , Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia Mediada por Chaperones , Neoplasias de Cabeza y Cuello , Péptidos y Proteínas de Señalización Intracelular , Infecciones por Papillomavirus , Proteína Quinasa C-alfa , Carcinoma de Células Escamosas de Cabeza y Cuello , Acetilglucosamina/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Estabilidad de Enzimas , Glicosilación , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/virología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Infecciones por Papillomavirus/metabolismo , Proteína Quinasa C-alfa/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/virología
19.
Front Cell Dev Biol ; 10: 842153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300424

RESUMEN

Deficiency in T cell-mediated adaptive immunity, such as low CD8+ T cell infiltration, inhibits the immune surveillance, promotes malignant transformation, and facilitates tumor growth. Microbiota dysbiosis diminishes the immune system and contributes to the occurrence of cancer. However, the impact of oral dysbiosis on the occurrence and molecular mechanisms of oropharyngeal cancer (OPC) remains largely unknown. In the current study, we used 4-nitroquinoline-1-oxide (4NQO) to mimic tobacco-related carcinogenesis to generate a murine OPC model and determine the role of microbiota changes in OPC tumorigenesis. Our results showed that the oral flora composition of mice was deregulated during the tumorigenesis of OPC. The abundance of Streptococcus, Veillonella, Muribacter, Rodentibacter, and Gemella was increased, whereas the dominant genus Lactobacillus was gradually decreased with disease progression. We further demonstrated that infiltration of CD8+ T lymphocytes was markedly reduced due to the reduction of Lactobacillus. Supplementation of Lactobacillus increased the infiltration of CD8+ T cells, promoted the expression of IFN-γ and granzyme B, and lessened the OPC progression. Analyzing the metabolites of the Lactobacillus, we demonstrated that Lactobacillus enhanced the anti-tumor immune response by producing acetate in OPC development. Administration of acetate to mice could increase the expression of IFN-γ and IFN-γ-inducible chemokines in tumor tissues by activating GPR43 to promote the infiltration of CD8+ T lymphocytes and substantially delay the development of OPC. Together, our data suggest that dysbiosis of oral microbiota promotes the tumorigenesis of OPC through downregulation of cytotoxic T lymphocytes. Lactobacillus and its metabolite acetate improve the tumor microenvironment, which could be applied in the treatment of OPC.

20.
Front Cell Infect Microbiol ; 11: 586392, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395308

RESUMEN

Radiotherapy is an important treatment for abdominal tumors. A critical side effect for this therapy is enteritis. In this review, we aim to summarize recent findings in radiation enteritis, in particular the role of gut microbiota dysbiosis in the development and therapy of the disease. Gut microbiota dysbiosis plays an important role in the occurrence of various diseases, such as radiation enteritis. Abdominal radiation results in changes in the composition of microbiota and reduces its diversity, which is mainly reflected in the decrease of Lactobacillus spp. and Bifidobacterium spp. and increase of Escherichia coli and Staphylococcus spp. Gut microbiota dysbiosis aggravates radiation enteritis, weakens intestinal epithelial barrier function, and promotes inflammatory factor expression. Pathogenic Escherichia coli induce the rearrangement and redistribution of claudin-1, occludin, and ZO-1 in tight junctions, a critical component in intestinal epithelial barrier. In view of the role that microbiome plays in radiation enteritis, we believe that intestinal flora could be a potential biomarker for the disease. Correction of microbiome by application of probiotics, fecal microbiota transplantation (FMT), and antibiotics could be an effective method for the prevention and treatment of radiation-induced enteritis.


Asunto(s)
Enteritis , Microbioma Gastrointestinal , Probióticos , Disbiosis , Enteritis/etiología , Trasplante de Microbiota Fecal , Humanos , Intestinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA