Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genes Cells ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39357875

RESUMEN

Regular exercise is believed to suppress cancer progression. However, the precise molecular mechanisms by which exercise prevents cancer development remain unclear. In this study, using a steatosis-associated liver cancer mouse model, we found that regular exercise at a speed of 18 m/min for 20 min daily suppressed liver cancer development. To explore the underlying mechanisms, we examined the gene expression profiles in the livers of the exercise and non-exercise groups. The expressions of circadian genes, such as Per1 and Cry2, were upregulated in the exercise group. As circadian rhythm disruption is known to cause various diseases, including cancer, improving circadian rhythm through exercise could contribute to cancer prevention. We further found that the expression of a series of E2F1 and c-Myc target genes that directly affect the proliferation of cancer cells was downregulated in the exercise group. However, the expression of E2F1 and c-Myc was transcriptionally unchanged but degraded at the post-translational level by exercise. Cry2, which is regulated by the Skp1-Cul1-FBXL3 (SCFFBXL3) ubiquitin ligase complex by binding to FBXL3, can form a complex with E2F1 and c-Myc, which we think is the mechanism to degrade them. Our study revealed a previously unknown mechanism by which exercise prevents cancer development.

2.
Cell Death Discov ; 8(1): 446, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335095

RESUMEN

Many genes responsible for Malignant mesothelioma (MM) have been identified as tumor suppressor genes and it is difficult to target these genes directly at a molecular level. We searched for the gene which showed synthetic lethal phenotype with LATS2, one of the MM causative genes and one of the kinases in the Hippo pathway. Here we showed that knockdown of SMG6 results in synthetic lethality in LATS2-inactivated cells. We found that this synthetic lethality required the nuclear translocation of YAP1 and TAZ. Both are downstream factors of the Hippo pathway. We also demonstrated that this synthetic lethality did not require SMG6 in nonsense-mediated mRNA decay (NMD) but in regulating telomerase reverse transcriptase (TERT) activity. In addition, the RNA-dependent DNA polymerase (RdDP) activity of TERT was required for this synthetic lethal phenotype. We confirmed the inhibitory effects of LATS2 and SMG6 on cell proliferation in vivo. The result suggests an interaction between the Hippo and TERT signaling pathways. We also propose that SMG6 and TERT are novel molecular target candidates for LATS2-inactivated cancers such as MM.

3.
Sci Adv ; 8(39): eabo5525, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36170363

RESUMEN

Intracellular gap (iGap) formation in liver sinusoidal endothelial cells (LSECs) is caused by the destruction of fenestrae and appears under pathological conditions; nevertheless, their role in metastasis of cancer cells to the liver remained unexplored. We elucidated that hepatotoxin-damaged and fibrotic livers gave rise to LSECs-iGap formation, which was positively correlated with increased numbers of metastatic liver foci after intrasplenic injection of Hepa1-6 cells. Hepa1-6 cells induced interleukin-23-dependent tumor necrosis factor-α (TNF-α) secretion by LSECs and triggered LSECs-iGap formation, toward which their processes protruded to transmigrate into the liver parenchyma. TNF-α triggered depolymerization of F-actin and induced matrix metalloproteinase 9 (MMP9), intracellular adhesion molecule 1, and CXCL expression in LSECs. Blocking MMP9 activity by doxycycline or an MMP2/9 inhibitor eliminated LSECs-iGap formation and attenuated liver metastasis of Hepa1-6 cells. Overall, this study revealed that cancer cells induced LSEC-iGap formation via proinflammatory paracrine mechanisms and proposed MMP9 as a favorable target for blocking cancer cell metastasis to the liver.


Asunto(s)
Células Endoteliales , Neoplasias Hepáticas , Actinas/metabolismo , Animales , Doxiciclina/metabolismo , Células Endoteliales/metabolismo , Humanos , Interleucina-23/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos , Factor de Necrosis Tumoral alfa/metabolismo
5.
Sci Immunol ; 7(72): eabl7209, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35749514

RESUMEN

Long-term senescent cells exhibit a secretome termed the senescence-associated secretory phenotype (SASP). Although the mechanisms of SASP factor induction have been intensively studied, the release mechanism and how SASP factors influence tumorigenesis in the biological context remain unclear. In this study, using a mouse model of obesity-induced hepatocellular carcinoma (HCC), we identified the release mechanism of SASP factors, which include interleukin-1ß (IL-1ß)- and IL-1ß-dependent IL-33, from senescent hepatic stellate cells (HSCs) via gasdermin D (GSDMD) amino-terminal-mediated pore. We found that IL-33 was highly induced in senescent HSCs in an IL-1ß-dependent manner in the tumor microenvironment. The release of both IL-33 and IL-1ß was triggered by lipoteichoic acid (LTA), a cell wall component of gut microbiota that was transferred and accumulated in the liver tissue of high-fat diet-fed mice, and the release of these factors was mediated through cell membrane pores formed by the GSDMD amino terminus, which was cleaved by LTA-induced caspase-11. We demonstrated that IL-33 release from HSCs promoted HCC development via the activation of ST2-positive Treg cells in the liver tumor microenvironment. The accumulation of GSDMD amino terminus was also detected in HSCs from human NASH-associated HCC patients, suggesting that similar mechanism could be involved in a certain type of human HCC. These results uncover a release mechanism for SASP factors from sensitized senescent HSCs in the tumor microenvironment, thereby facilitating obesity-associated HCC progression. Furthermore, our findings highlight the therapeutic potential of inhibitors of GSDMD-mediated pore formation for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Senescencia Celular , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Interleucina-33/metabolismo , Ratones , Obesidad/complicaciones , Obesidad/metabolismo , Microambiente Tumoral
6.
J Biol Chem ; 295(2): 390-402, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31792053

RESUMEN

MicroRNA-122 (miR-122) is highly expressed in hepatocytes, where it plays an important role in regulating cholesterol and fatty acid metabolism, and it is also a host factor required for hepatitis C virus replication. miR-122 is selectively stabilized by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2 (also known as PAPD4 or TENT2). However, it is unclear how GLD-2 specifically stabilizes miR-122. Here, we show that QKI7 KH domain-containing RNA binding (QKI-7), one of three isoforms of the QKI proteins, which are members of the signal transduction and activation of RNA (STAR) family of RNA-binding proteins, is involved in miR-122 stabilization. QKI down-regulation specifically decreased the steady-state level of mature miR-122, but did not affect the pre-miR-122 level. We also found that QKI-7 uses its C-terminal region to interact with GLD-2 and its QUA2 domain to associate with the RNA-induced silencing complex protein Argonaute 2 (Ago2), indicating that the GLD-2-QKI-7 interaction recruits GLD-2 to Ago2. QKI-7 exhibited specific affinity to miR-122 and significantly promoted GLD-2-mediated 3' adenylation of miR-122 in vitro Taken together, our findings indicate that miR-122 binds Ago2-interacting QKI-7, which recruits GLD-2 for 3' adenylation and stabilization of miR-122.


Asunto(s)
MicroARNs/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Proteínas Argonautas/metabolismo , Línea Celular Tumoral , Humanos , Poliadenilación , Mapas de Interacción de Proteínas , Estabilidad del ARN
7.
Sci Rep ; 6: 31615, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27539729

RESUMEN

Shugoshin 1 (SGO1) is required for accurate chromosome segregation during mitosis and meiosis; however, its other functions, especially at interphase, are not clearly understood. Here, we found that downregulation of SGO1 caused a synergistic phenotype in cells overexpressing MYCN. Downregulation of SGO1 impaired proliferation and induced DNA damage followed by a senescence-like phenotype only in MYCN-overexpressing neuroblastoma cells. In these cells, SGO1 knockdown induced DNA damage, even during interphase, and this effect was independent of cohesin. Furthermore, MYCN-promoted SGO1 transcription and SGO1 expression tended to be higher in MYCN- or MYC-overexpressing cancers. Together, these findings indicate that SGO1 plays a role in the DNA damage response in interphase. Therefore, we propose that SGO1 represents a potential molecular target for treatment of MYCN-amplified neuroblastoma.


Asunto(s)
Proteínas de Ciclo Celular/biosíntesis , Daño del ADN , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/metabolismo , Transcripción Genética , Animales , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Interfase/genética , Ratones , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/patología
8.
Biochem Biophys Res Commun ; 455(3-4): 323-31, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25446091

RESUMEN

The poly(A) tail of mRNAs plays pivotal roles in the posttranscriptional control of gene expression at both translation and mRNA stability. Recent findings demonstrate that the poly(A) tail is globally stabilized by some stresses. However, the mechanism underlying this phenomenon has not been elucidated. Here, we show that arsenite-induced oxidative stress inhibits deadenylation of mRNA primarily through downregulation of Tob and Pan3, both of which mediate the recruitment of deadenylases to mRNA. Arsenite selectively induces the proteolytic degradation of Tob and Pan3, and siRNA-mediated knockdown of Tob and Pan3 recapitulates stabilization of the mRNA poly(A) tail observed during arsenite stress. Although arsenite also inhibits translation by activating the eIF2α kinase HRI, arsenite-induced mRNA stabilization can be observed under HRI-depleted conditions. These results highlight the essential role of Tob and Pan3 in the stress-induced global stabilization of mRNA.


Asunto(s)
Arsenitos/química , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Regulación hacia Abajo , Células HeLa , Humanos , Estrés Oxidativo , Poli A/química , Unión Proteica , Proteolisis , Estabilidad del ARN , ARN Interferente Pequeño/metabolismo
9.
EMBO J ; 30(7): 1311-23, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21336257

RESUMEN

Tob is a member of the anti-proliferative protein family, which functions in transcription and mRNA decay. We have previously demonstrated that Tob is involved in the general mechanism of mRNA decay by mediating mRNA deadenylation through interaction with Caf1 and a general RNA-binding protein, PABPC1. Here, we focus on the role of Tob in the regulation of specific mRNA. We show that Tob binds directly to a sequence-specific RNA-binding protein, cytoplasmic polyadenylation element-binding protein 3 (CPEB3). CPEB3 negatively regulates the expression of a target by accelerating deadenylation and decay of its mRNA, which it achieves by tethering to the mRNA. The carboxyl-terminal RNA-binding domain of CPEB3 binds to the carboxyl-terminal unstructured region of Tob. Tob then binds Caf1 deadenylase and recruits it to CPEB3 to form a ternary complex. The CPEB3-accelerated deadenylation was abrogated by a dominant-negative mutant of either Caf1 or Tob. Together, these results indicate that Tob mediates the recruitment of Caf1 to the target of CPEB3 and elicits deadenylation and decay of the mRNA. Our results provide an explanation of how Tob regulates specific biological processes.


Asunto(s)
Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Proteínas Supresoras de Tumor/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Estabilidad del ARN , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA