Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Diabetes Res ; 2024: 1222395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725443

RESUMEN

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inflamación , Inulina , Riñón , Metabolómica , Ratones Endogámicos ICR , Estrés Oxidativo , Animales , Inulina/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Ratones , Masculino , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Estrés Oxidativo/efectos de los fármacos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/patología , Ácidos Grasos Volátiles/metabolismo , Dieta Alta en Grasa , Nitrógeno de la Urea Sanguínea
2.
Oncol Rep ; 51(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38456491

RESUMEN

High concentrations of cobalt chloride (CoCl2) can induce the formation of polyploid giant cancer cells (PGCCs) in various tumors, which can produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric division. To study the role of hypoxia­inducible factor (HIF) 1α in the formation of PGCCs, colon cancer cell lines Hct116 and LoVo were used as experimental subjects. Western blotting, nuclear and cytoplasmic protein extraction and immunocytochemical experiments were used to compare the changes in the expression and subcellular localization of HIF1α, microphthalmia­associated transcription factor (MITF), protein inhibitor of activated STAT protein 4 (PIAS4) and von Hippel­Lindau disease tumor suppressor (VHL) after treatment with CoCl2. The SUMOylation of HIFα was verified by co­immunoprecipitation assay. After inhibiting HIF1α SUMOylation, the changes in proliferation, migration and invasion abilities of Hct116 and LoVo were compared by plate colony formation, wound healing and Transwell migration and invasion. In addition, lysine sites that led to SUMOylation of HIF1α were identified through site mutation experiments. The results showed that CoCl2 can induce the formation of PGCCs with the expression level of HIF1α higher in treated cells than in control cells. HIF1α was primarily located in the cytoplasm of control cell. Following CoCl2 treatment, the subcellular localization of HIF1α was primarily in the nuclei of PGCCs with daughter cells (PDCs). After treatment with SUMOylation inhibitors, the nuclear HIF1α expression in PDCs decreased. Furthermore, their proliferation, migration and invasion abilities also decreased. After inhibiting the expression of MITF, the expression of HIF1α decreased. MITF can regulate HIF1α SUMOylation. Expression and subcellular localization of VHL and HIF1α did not change following PIAS4 knockdown. SUMOylation of HIF1α occurs at the amino acid sites K391 and K477 in PDCs. After mutation of the two sites, nuclear expression of HIF1α in PDCs was reduced, along with a significant reduction in the proliferation, migration and invasion abilities. In conclusion, the post­translation modification regulated the subcellular location of HIF1α and the nuclear expression of HIF1α promoted the proliferation, migration and invasion abilities of PDCs. MITF could regulate the transcription and protein levels of HIF1α and participate in the regulation of HIF1α SUMOylation.


Asunto(s)
Cobalto , Factor de Transcripción Asociado a Microftalmía , Neoplasias , Humanos , Factor de Transcripción Asociado a Microftalmía/genética , Sumoilación , Línea Celular Tumoral , Poliploidía , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Movimiento Celular , Proliferación Celular
3.
Clin Transl Med ; 14(2): e1567, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38362620

RESUMEN

Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Línea Celular Tumoral , Células Gigantes/metabolismo , Células Gigantes/patología , Antineoplásicos/metabolismo , Poliploidía , Neoplasias/patología
4.
Cell Commun Signal ; 22(1): 72, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279176

RESUMEN

Over the past decade, the role of the 14-3-3 protein has received increasing interest. Seven subtypes of 14-3-3 proteins exhibit high homology; however, each subtype maintains its specificity. The 14-3-3ε protein is involved in various physiological processes, including signal transduction, cell proliferation, apoptosis, autophagy, cell cycle regulation, repolarization of cardiac action, cardiac development, intracellular electrolyte homeostasis, neurodevelopment, and innate immunity. It also plays a significant role in the development and progression of various diseases, such as cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancer. These immense and various involvements of 14-3-3ε in diverse processes makes it a promising target for drug development. Although extensive research has been conducted on 14-3-3 dimers, studies on 14-3-3 monomers are limited. This review aimed to provide an overview of recent reports on the molecular mechanisms involved in the regulation of binding partners by 14-3-3ε, focusing on issues that could help advance the frontiers of this field. Video Abstract.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Proliferación Celular
5.
Molecules ; 28(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903391

RESUMEN

This study aims to evaluate the effect of berberine-based carbon quantum dots (Ber-CDs) on improving 5-fluorouracil (5-FU)-induced intestinal mucositis in C57BL/6 mice, and explored the mechanisms behind this effect. Thirty-two C57BL/6 mice were divided into four groups: normal control (NC), 5-FU-induced intestinal mucositis model (5-FU), 5-FU + Ber-CDs intervention (Ber-CDs), and 5-FU + native berberine intervention (Con-CDs). The Ber-CDs improved body weight loss in 5-FU-induced mice with intestinal mucositis compared to the 5-FU group. The expressions of IL-1ß and NLRP3 in spleen and serum in Ber-CDs and Con-Ber groups were significantly lower than those in the 5-FU group, and the decrease was more significant in the Ber-CDs group. The expressions of IgA and IL-10 in the Ber-CDs and Con-Ber groups were higher than those in the 5-FU group, but the up-regulation was more significant in the Ber-CDs group. Compared with the 5-FU group, the relative contents of Bifidobacterium, Lactobacillus and the three main SCFAs in the colon contents were significantly increased the Ber-CDs and Con-Ber groups. Compared with the Con-Ber group, the concentrations of the three main short-chain fatty acids in the Ber-CDs group were significantly increased. The expressions of Occludin and ZO-1 in intestinal mucosa in the Ber-CDs and Con-Ber groups were higher than those in the 5-FU group, and the expressions of Occludin and ZO-1 in the Ber-CDs group were more higher than that in the Con-Ber group. In addition, compared with the 5-FU group, the damage of intestinal mucosa tissue in the Ber-CDs and Con-Ber groups were recovered. In conclusion, berberine can attenuate intestinal barrier injury and oxidative stress in mice to mitigate 5-fluorouracil-induced intestinal mucositis, moreover, the above effects of Ber-CDs were more significant than those of native berberine. These results suggest that Ber-CDs may be a highly effective substitute for natural berberine.


Asunto(s)
Berberina , Enfermedades Intestinales , Mucositis , Puntos Cuánticos , Animales , Ratones , Mucositis/inducido químicamente , Fluorouracilo/farmacología , Berberina/farmacología , Ocludina/metabolismo , Ratones Endogámicos C57BL , Mucosa Intestinal/metabolismo , Enfermedades Intestinales/metabolismo , Ácidos Grasos Volátiles/metabolismo , Estrés Oxidativo
6.
Cell Oncol (Dordr) ; 46(3): 735-744, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36913067

RESUMEN

PURPOSE: Methylenetetrahydrofolate dehydrogenase (MTHFD1), a key enzyme on the folate pathway, has been implicated in the tumor development of distinct types of cancers. The single nucleotide polymorphism (SNP) of 1958G > A mutation in the coding region of MTHFD1 (arginine 653 is mutated into glutamine) has been detected in a significant proportion of clinical samples of hepatocellular carcinoma (HCC). METHODS : Hepatoma cell lines, 97H and Hep3B were used. The expression of MTHFD1 and SNP mutation protein was determined by immunoblotting analysis. The protein ubiquitination of MTHFD1 was detected by immunoprecipitation analysis. The post-translational modification sites and interacting proteins of MTHFD1 in the presence of G1958A SNP were identified by mass spectrometry. Metabolic flux analysis was used to detect the synthesis of relevant metabolites sourced from serine isotope. RESULTS: The present study showed G1958A SNP of MTHFD1, encoding MTHFD1 R653Q, was associated with the attenuated protein stability caused by ubiquitination-mediated protein degradation. Mechanistically, MTHFD1 R653Q displayed an enhanced binding to the E3 ligase TRIM21, which was responsible for the augmented ubiquitination, and MTHFD1 K504 was identified to be the primary ubiquitination site. The subsequent metabolite analysis revealed MTHFD1 R653Q resulted in the repressed flux of serine-derived methyl group into metabolite precursors for purine synthesis, and the compromised purine synthesis was demonstrated to be responsible for the impeded growth capability in MTHFD1 R653Q-expressing cells. Moreover, the suppressive effect of MTHFD1 R653Q expression in tumorigenesis was verified by xenograft analysis, and the relationship between MTHFD1 G1958A SNP and its protein levels was revealed in clinical human liver cancer specimens. CONCLUSION: Our results uncovered an unidentified mechanism underlying of the impact of G1958A SNP on MTHFD1 protein stability and tumor metabolism in HCC. which provides a molecular basis for the according clinical management when considering MTHFD1 as a therapeutic target.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Antígenos de Histocompatibilidad Menor/genética
7.
J Diabetes Res ; 2023: 8810106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162631

RESUMEN

Nephropathy injury is a prevalent complication observed in individuals with diabetes, serving as a prominent contributor to end-stage renal disease, and the advanced glycation products (AGEs) are important factors that induce kidney injury in patients with diabetes. Addressing this condition remains a challenging aspect in clinical practice. The aim of this study was to explore the effects of Lactiplantibacillus plantarum NKK20 strain (NKK20) which protects against diabetic kidney disease (DKD) based on animal and cell models. The results showed that the NKK20 can significantly reduce renal inflammatory response, serum oxidative stress response, and AGE concentration in diabetic mice. After treatment with NKK20, the kidney damage of diabetic mice was significantly improved, and more importantly, the concentration of butyrate, a specific anti-inflammatory metabolite of intestinal flora in the stool of diabetic mice, was significantly increased. In addition, nontargeted metabolomics analysis showed a significant difference between the metabolites in the mouse serum contents of the NKK20 administration group and those in the nephropathy injury group, in which a total of 24 different metabolites that were significantly affected by NKK20 were observed, and these metabolites were mainly involved in glycerophospholipid metabolism and arachidonic acid metabolism. Also, the administration of butyrate to human kidney- (HK-) 2 cells that were stimulated by AGEs resulted in a significant upregulation of ZO-1, Occludin, and E-cadherin gene expressions and downregulation of α-SMA gene expression. This means that butyrate can maintain the tight junction structure of HK-2 cells and inhibit fibrosis. Butyrate also significantly inhibited the activation of PI3K/Akt pathway. These results indicate that NKK20 can treat kidney injury in diabetic mice by reducing blood glucose and AGE concentration and increasing butyrate production in the intestine. By inhibiting PI3K pathway activation in HK-2 cells, butyrate maintains a tight junction structure of renal tubule epithelial cells and inhibits renal tissue fibrosis. These results suggest that NKK20 is helpful to prevent and treat the occurrence and aggravation of diabetic kidney injury.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Butiratos/metabolismo , Butiratos/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Riñón/metabolismo , Intestinos , Diabetes Mellitus Tipo 2/metabolismo , Fibrosis
8.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557849

RESUMEN

In recent years, sodium butyrate has gained increased attention for its numerous beneficial properties. However, whether sodium butyrate could alleviate inflammatory damage by macrophage activation and its underlying mechanism remains unclear. The present study used an advanced glycosylation products- (AGEs-) induced inflammatory damage model to study whether sodium butyrate could alleviate oxidative stress, inflammation, and metabolic dysfunction of human monocyte-macrophage originated THP-1 cells in a PI3K-dependent autophagy pathway. The results indicated that sodium butyrate alleviated the AGEs-induced oxidative stress, decreased the level of reactive oxygen species (ROS), increased malondialdehyde (MDA) and mRNA expression of pro-inflammatory cytokines of interleukin (IL)-1ß and tumor necrosis factor (TNF)-α, and increased the content of superoxide dismutase (SOD). Sodium butyrate reduced the protein expression of the NLR family, pyrin domain-containing protein 3 (NLRP3) and Caspase-1, and decreased the nucleus expression of nuclear factor-kappaB (NF-κB). Sodium butyrate decreased the expression of light-chain-associated protein B (LC3B) and Beclin-1, and inhibited autophagy. Moreover, sodium butyrate inhibited the activation of the PI3K/Akt pathway in AGEs-induced THP-1 cells. In addition, the metabolomics analysis showed that sodium butyrate could affect the production of phosphatidylcholine, L-glutamic acid, UDP-N-acetylmuraminate, biotinyl-5'-AMP, and other metabolites. In summary, these results revealed that sodium butyrate inhibited autophagy and NLRP3 inflammasome activation by blocking the PI3K/Akt/NF-κB pathway, thereby alleviating oxidative stress, inflammation, and metabolic disorder induced by AGEs.


Asunto(s)
FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Ácido Butírico/farmacología , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células THP-1 , Inflamación/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Productos Finales de Glicación Avanzada/metabolismo
9.
Front Cell Dev Biol ; 10: 938289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060811

RESUMEN

Metastasis, a primary cause of death in patients with malignancies, is promoted by intrinsic changes in both tumor and non-malignant cells in the tumor microenvironment (TME). As major components of the TME, tumor-associated neutrophils (TANs) promote tumor progression and metastasis through communication with multiple growth factors, chemokines, inflammatory factors, and other immune cells, which together establish an immunosuppressive TME. In this review, we describe the potential mechanisms by which TANs participate in tumor metastasis based on recent experimental evidence. We have focused on drugs in chemotherapeutic regimens that target TANs, thereby providing a promising future for cancer immunotherapy.

10.
Cancer Cell Int ; 22(1): 169, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488254

RESUMEN

Chondrogenesis is the formation of chondrocytes and cartilage tissues and starts with mesenchymal stem cell (MSC) recruitment and migration, condensation of progenitors, chondrocyte differentiation, and maturation. The chondrogenic differentiation of MSCs depends on co-regulation of many exogenous and endogenous factors including specific microenvironmental signals, non-coding RNAs, physical factors existed in culture condition, etc. Cancer stem cells (CSCs) exhibit self-renewal capacity, pluripotency and cellular plasticity, which have the potential to differentiate into post-mitotic and benign cells. Accumulating evidence has shown that CSCs can be induced to differentiate into various benign cells including adipocytes, fibrocytes, osteoblast, and so on. Retinoic acid has been widely used in the treatment of acute promyelocytic leukemia. Previous study confirmed that polyploid giant cancer cells, a type of cancer stem-like cells, could differentiate into adipocytes, osteocytes, and chondrocytes. In this review, we will summarize signaling pathways and cytokines in chondrogenic differentiation of MSCs. Understanding the molecular mechanism of chondrogenic differentiation of CSCs and cancer cells may provide new strategies for cancer treatment.

11.
J Biomed Nanotechnol ; 18(2): 463-473, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35484750

RESUMEN

Rational: A bioactive small molecule of precision medicine involves targeted therapies. Shikonin, a herbal extract, is an active small molecule that is traditionally used in wound healing for its anti-tumor and anti-inflammatory properties. Therefore, the present study aims to evaluate the anti-inflammatory role of shikonin in skin burn wound healing and hair follicle regeneration and to identify molecular signaling pathways that promote the regeneration. Method: A secondary skin burn model of mice was established by conventional method. The burn wound was externally treated with shikonin ointment and excipient treated mice were used as controls. Skin samples were taken on the day 3 and 7 after drug treatment and the dosage was unified in the experiments. The wound healing process was observed by histopathological and immunofluorescence (IF) staining. The proliferation of hair follicle cells in wound skin was tracked by 5-Ethynyl-2'-deoxyuridne (EdU) staining. The inflammatory factors at the wound healing site were quantified by polymerase chain reaction (qPCR). The PI3K/Akt, P65, Ki67 signaling proteins and Bax/BCL2 apoptosis proteins were studied by western blot analysis. The functionality of PI3K/Akt signaling pathway was tested using LY294002, an inhibitor of PI3K. Result: Shikonin treated mice group exhibited better and faster skin burn wound healing in comparison with the controls. The proliferation of new skin cells and hair follicle regeneration in the wound site of the shikonin treated group was more active. The recruitment of macrophages in shikonin treated group was inhibited inturn decreased the expression of inflammatory factors. However, LY294002 inhibited the shikonin-mediated PI3K/Akt signaling pathway and affected the wound healing process. Conclusion: In conclusion, this study strengthens the hypothesis that bioactive small molecule, shikonin, inhibits inflammation, promotes wound healing and has a significant protective effect on the deep hair follicles against burn skin injury by activating the PI3K/Akt signaling pathway.


Asunto(s)
Quemaduras , Folículo Piloso , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Quemaduras/tratamiento farmacológico , Modelos Animales de Enfermedad , Folículo Piloso/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Transducción de Señal , Cicatrización de Heridas
12.
Biomedicines ; 10(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35052864

RESUMEN

Ribosome biogenesis is a cellular process critical for protein homeostasis during cell growth and multiplication. Our previous study confirmed up-regulation of ribosome biogenesis during endometriosis progression and malignant transition, thus anti-ribosome biogenesis may be effective for treating endometriosis and the associated complications. A mouse model with human endometriosis features was established and treated with three different drugs that can block ribosome biogenesis, including inhibitors against mTOR/PI3K (GSK2126458) and RNA polymerase I (CX5461 and BMH21). The average lesion numbers and disease frequencies were significantly reduced in treated mice as compared to controls treated with vehicle. Flow cytometry analyses confirmed the reduction of small peritoneal macrophage and neutrophil populations with increased large versus small macrophage ratios, suggesting inflammation suppression by drug treatments. Lesions in treated mice also showed lower nerve fiber density which can support the finding of pain-relief by behavioral studies. Our study therefore suggested ribosome biogenesis as a potential therapeutic target for treating endometriosis.

13.
Dokl Biochem Biophys ; 500(1): 360-367, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34697744

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) have peaked interests in many researches in these recent years due to their advantageous application in modern health care applications. Therefore, we successfully synthesized ZnO NPs by Acacia luciana flower extract as stabilizing, reducing and capping agent, to investigate the antiproliferative potential and apoptosis induction in breast cancer cell lines. The involvements of Acacia luciana bioactive compounds in the stabilization of the ZnO NPs were confirmed by FTIR analysis. FESEM and EDS instruments confirmed that biosynthesized nanoparticles have an irregular morphology and mostly composed of Zn, C, and O respectively. The TEM and zeta potential instruments confirmed that biosynthesized nanoparticles have slight negative charges with particle size of 40 nm. The survivorship of MCF-7 cells were examined by MTT assay and revealed that ZnO NPs inhibited cell viability in a dose- and time-dependent effect with IC50 value of 3.1 µg/mL after 72 h exposure. Also, as a novel work onto ZnO NPs obtained by Acacia extracts, the Bak1/Bclx expression ratio was elucidated utilizing RT-PCR technique. The results demonstrated that ZnO NPs could enhance the expression ratio; therefore they have the potential to induce apoptosis in breast cancer cells via mitochondria-mediated apoptotic pathway.


Asunto(s)
Óxido de Zinc , Humanos , Células MCF-7
14.
Front Oncol ; 11: 720814, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34676163

RESUMEN

Arsenic trioxide (ATO) has been used to treat acute promyelocytic leukemia. However, it is not effective in treating solid tumors such as colorectal cancer. We have previously reported that polyploid giant cancer cells (PGCCs) exhibiting the characteristics of cancer stem cells can be generated by various inducers. In this study, ATO was used to induce the formation of PGCCs in LoVo and Hct116 colon cancer cell lines. The migration, invasion, and proliferation abilities of colon cancer cells with and without ATO treatment were assessed by wound-healing, transwell, and plate colony formation assays. The expression of epithelial to mesenchymal transition-related proteins and erythroid differentiation-related proteins in colon cancer cells was further evaluated by western blot and immunocytochemical assays. LoVo and Hct116 cells were transfected with a eukaryotic expression vector for green fluorescent protein (GFP), red fluorescent protein (RFP), H2B-GFP, and H2B-mCherry to study PGCCs formation via cell fusion. WB and ICC assays were performed to assess the expression of cell fusion-related proteins. MG132, small interfering RNA-glial cell missing 1 (GCM1), and chromatin immunoprecipitation-polymerase chain reaction assays were performed to study the role of GCM1/syncytin-1-mediated cell fusion. Clinically, the significance of cell fusion-related proteins and erythroid differentiation-related proteins expression in human colorectal cancer tissues was evaluated. Results of our study showed that ATO induced the formation of PGCCs, and the daughter cells derived from PGCCs gained a mesenchymal phenotype and exhibited strong migration, invasion, and proliferation abilities. PGCCs also produced embryonic hemoglobin-delta and -zeta with strong oxygen-binding ability and erythroid differentiation-related proteins after ATO treatment. In addition, cell fusion was observed during the formation of PGCCs, indicated by the presence of yellow fluorescence via the GCM1/syncytin-1 signaling pathway. Clinically, the expression of cell fusion-related and erythroid differentiation-related proteins gradually increased with the progression of human colorectal cancer tissues. In conclusion, ATO can promote tumor progression by inducing the formation of PGCCs via GCM1/syncytin-1-mediated cell fusion. PGCCs can produce daughter cells with high invasion and migration abilities and embryonic hemoglobin with strong oxygen binding ability, promoting survival of tumor cells in a hypoxic microenvironment.

15.
Nat Metab ; 3(10): 1357-1371, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34663976

RESUMEN

The multifunctional roles of metabolic enzymes allow for the integration of multiple signals to precisely transduce external stimuli into cell fate decisions. Elevation of 3-phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme for de novo serine biosynthesis, is broadly associated with human cancer development; although how PHGDH activity is regulated and its implication in tumorigenesis remains unclear. Here we show that glucose restriction induces the phosphorylation of PHGDH by p38 at Ser371, which promotes the translocation of PHGDH from the cytosol into the nucleus. Concurrently, AMPK phosphorylates PHGDH-Ser55, selectively increasing PHGDH oxidation of malate into oxaloacetate, thus generating NADH. In the nucleus, the altered PHGDH activity restricts NAD+ level and compartmentally repressed NAD+-dependent PARP1 activity for poly(ADP-ribosyl)ation of c-Jun, thereby leading to impaired c-Jun transcriptional activity linked to cell growth inhibition. Physiologically, nuclear PHGDH sustains tumour growth under nutrient stress, and the levels of PHGDH-Ser371 and PHGDH-Ser55 phosphorylation correlate with p38 and AMPK activity, respectively, in clinical human pancreatic cancer specimens. These findings illustrate a previously unidentified nutrient-sensing mechanism with the critical involvement of a non-canonical metabolic effect of PHGDH and underscore the functional importance of alternative PHGDH activity in tumorigenesis.


Asunto(s)
Neoplasias/patología , Fosfoglicerato-Deshidrogenasa/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias/enzimología
16.
J Bone Miner Res ; 36(8): 1605-1620, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33950533

RESUMEN

Lgr4, a G-protein-coupled receptor, is associated with various physiological and pathological processes including oncogenesis, energy metabolism, and bone remodeling. However, whether Lgr4 is involved in osteoblasts' metabolism is not clear. Here we uncover that in preosteoblast cell line, lacking Lgr4 results in decreased osteogenic function along with reduced glucose consumption, glucose uptake, and lactate production in the presence of abundant oxygen, which is referred to as aerobic glycolysis. Activating canonical Wnt/ß-catenin signaling rescued the glycolytic dysfunction. Lgr4 promotes the expression of pyruvate dehydrogenase kinase 1 (pdk1) and is abolished by interfering canonical Wnt/ß-catenin signaling. Mice lacking Lgr4 specifically in osteoblasts (Lgr4osb-/- ) exhibit decreased bone mass and strength due to reduced bone formation. Additionally, glycolysis of osteoblasts is impaired in Lgr4osb-/- mice. Our study reveals a novel function of Lgr4 in regulating the cellular metabolism of osteoblasts. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Diferenciación Celular , Glucólisis , Ratones , Osteoblastos/metabolismo , Receptores Acoplados a Proteínas G/genética , beta Catenina/metabolismo
17.
Front Cell Dev Biol ; 9: 809668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35178400

RESUMEN

Cell fusion is involved in many physiological and pathological processes, including gamete binding, and cancer development. The basic processes of cell fusion include membrane fusion, cytoplasmic mixing, and nuclear fusion. Cell fusion is regulated by different proteins and signaling pathways. Syncytin-1, syncytin-2, glial cell missing 1, galectin-1 and other proteins (annexins, myomaker, myomerger etc.) involved in cell fusion via the cyclic adenosine-dependent protein kinase A, mitogen-activated protein kinase, wingless/integrase-1, and c-Jun N-terminal kinase signaling pathways. In the progression of malignant tumors, cell fusion is essential during the organ-specific metastasis, epithelial-mesenchymal transformation, the formation of cancer stem cells (CSCs), cancer angiogenesis and cancer immunity. In addition, diploid cells can be induced to form polyploid giant cancer cells (PGCCs) via cell fusion under many kinds of stimuli, including cobalt chloride, chemotherapy, radiotherapy, and traditional Chinese medicine. PGCCs have CSC-like properties, and the daughter cells derived from PGCCs have a mesenchymal phenotype and exhibit strong migration, invasion, and proliferation abilities. Therefore, exploring the molecular mechanisms of cell fusion can enable us better understand the development of malignant tumors. In this review, the basic process of cell fusion and its significance in cancer is discussed.

18.
RSC Adv ; 11(28): 17352-17359, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35479671

RESUMEN

Developing high-performance electrocatalysts for urea oxidation reaction (UOR) can not only solve the problem of environmental pollution, but also solve the problem of the energy crisis by producing hydrogen for electrodes. The preparation of porous three-dimensional nanostructures as efficient electrocatalysts has become important work. Here, we developed a novel three-dimensional (3D) nanostructure of NiFe(OH) X nanoparticles/nickel foam with a high active area by a simple electroplating method and a subsequent treatment with ferric ion solution. This structure shows much greater UOR activity than the control sample (Ni/Ni foam) with the potential of 1.395 V (vs. RHE) (with an overpotential of 1.025 V) for driving the current density of 100 mA cm-2 in 1.0 M KOH electrolyte with 0.33 M urea. This work not only provides rapid and large-scale preparation of a three-dimensional nanostructure, but also gives a new way to design and obtain high-performance electrocatalysts.

19.
J Bone Miner Res ; 35(5): 978-993, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31914211

RESUMEN

Bone remodeling is dynamic and is tightly regulated through bone resorption dominated by osteoclasts and bone formation dominated by osteoblasts. Imbalances in this process can cause various pathological conditions, such as osteoporosis. Bone morphogenetic protein 9 (BMP9), a biomolecule produced and secreted by the liver, has many pharmacological effects, including anti-liver fibrosis, antitumor, anti-heart failure, and antidiabetic activities. However, the effects of BMP9 on the regulation of osteoblast and osteoclast functions and the underlying molecular mechanism(s) have not yet been investigated. In this study, BMP9 increased the expression of osteoblastogenic gene markers, such as ALP, Cola1, OCN, RUNX2, and OSX, and ALP activity in MC3T3-E1 cells by upregulating LGR6 and activating the Wnt/ß-catenin pathway. BMP9 also suppressed receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation of bone marrow macrophages (BMMs) by inhibiting the Akt-NF-κB-NFATc1 pathway. More importantly, in an ovariectomy (OVX) mouse model, BMP9 attenuated bone loss and improved bone biomechanical properties in vivo by increasing bone-forming activity and suppressing bone resorption activity. Accordingly, our current work highlights the dual regulatory effects that BMP9 exerts on bone remodeling by promoting bone anabolic activity and inhibiting osteoclast differentiation in OVX mice. © 2020 American Society for Bone and Mineral Research.


Asunto(s)
Resorción Ósea , Factor 2 de Diferenciación de Crecimiento/genética , Animales , Diferenciación Celular , Femenino , Ratones , Factores de Transcripción NFATC , Osteoblastos , Osteoclastos , Osteogénesis , Ovariectomía , Ligando RANK , Vía de Señalización Wnt
20.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(8): 1121-1125, 2017 Aug 20.
Artículo en Chino | MEDLINE | ID: mdl-28801296

RESUMEN

OBJECTIVE: To assess the clinical value of ultrasound-guided vacuum-assisted Mammotome (MMT) system for surgical resection of benign breast disease. METHODS: This retrospective study was conducted among 1267 patients who underwent minimally invasive surgery with ultrasound-guided MMT system for benign breast disease at our center between January, 2009 and January, 2014. The resection rate, incidence of complication, recurrence rate, patients' satisfaction, clinical follow-up results and risk factors were analyzed. The patients were followed up at 1 month, 6 months and every 6 months thereafter for up to 2 years with a median follow-up of 22 months. RESULTS: Of the total of 1267 patients, 1259 (99.36%) had complete resection of the breast lesions, and residual lesions were found in 8 cases 1 month after the operation. The resection rate was significantly associated with lesion size (P=0.003) but not with the patients'age, pathology, BI-RADS classification, or the number or location of the lesions (P>0.05). Eighty-nine (7.02%) patients showed postoperative complications, and hematoma occurred in 70 (5.52%) patients after the operation. The complication rate was significantly associated with the number and location of lesions (P=0.000) but not with age, pathology, BI-RADS classification or the lesion size (P>0.05). A total of 193 (15.23%) patients had recurrence after the operation, including 65 (5.13%) with in situ recurrence and 128 (10.1%) with new lesions. The recurrence rate was significantly associated with the number and size of lesions (P=0.000) but not with age, pathology, BI-RADS classification or location of lesions(P>0.05). Six patients were not satisfied with the appearance of the incision, and the overall satisfaction rate of the patients was 99.52%. CONCLUSION: s Ultrasound-guided vacuum-assisted MMT excision is a safe and effective procedure for benign breast disease with a low surgical complication rate, a high resection rate and a low recurrence rate. This technique results in good postoperative appearance for treatment of benign and high-risk breast lesions, especially multiple benign breast lesions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA