Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Phys Chem Chem Phys ; 26(30): 20490-20499, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39028298

RESUMEN

In recent years, 3-hydroxychromone (3-HC) and its derivatives have attracted much interest for their applications as molecular photoswitches and fluorescent probes. A clear understanding of their excited-state dynamics is essential for their applications and further development of new functional 3-HC derivatives. However, the deactivation mechanism of the photoexcited 3-HC family is still puzzling as their spectral properties are sensitive to the surrounding medium and substituents. The excited-state relaxation channels of 3-HC have been a matter of intense debate. In the current work, we thoroughly investigated the excited-state decay process of the 3-HC system in the gas phase using high-level electronic structure calculations and on-the-fly excited-state dynamic simulations intending to provide insight into the intrinsic photochemical properties of the 3-HC system. A new deactivation mechanism is proposed in the gas phase, which is different from that in solvents. The excited-state intramolecular proton transfer (ESIPT) process that occurs in solutions is not preferred in the gas phase due to the existence of a sizable energy barrier (∼0.8 eV), and thus, no dual fluorescence is found. On the contrary, the non-radiative decay process is the dominant decay channel, which is driven by photoisomerization combined with ring-puckering and ring-opening processes. The results coincide with the observations of an experiment performed in a supersonic jet by Itoh (M. Itoh, Pure Appl. Chem., 1993, 65(8), 1629-1634). The current work indicates that the solution environment plays an important role in regulating the excited-state dynamic behaviour of the 3-HC system. This study thus provides theoretical guidance for the rational design and improvement of the photochemical properties of the 3-HC system and paves the way for further investigation into its photochemical properties in complex environments.

2.
Cell Death Dis ; 15(6): 390, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830885

RESUMEN

Glioma is the most common and aggressive type of primary malignant brain tumor. The N6-methyladenosine (m6A) modification widely exists in eukaryotic cells and plays an important role in the occurrence and development of human tumors. However, the function and mechanism of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an RNA-binding protein and m6A reader in gliomas remains to be comprehensively and extensively explored. Herein, we found that HNRNPC mRNA and protein overexpression were associated with a poor prognosis for patients with gliomas, based on the data from TCGA, the CGGA, and the TMAs. Biologically, HNRNPC knockdown markedly repressed malignant phenotypes of glioma in vitro and in vivo, whereas ectopic HNRNPC expression had the opposite effect. Integrative RNA sequencing and MeRIP sequencing analyses identified interleukin-1 receptor-associated kinase 1 (IRAK1) as a downstream target of HNRNPC. The glioma public datasets and tissue microarrays (TMAs) data indicated that IRAK1 overexpression was associated with poor prognosis, and IRAK1 knockdown significantly repressed malignant biological behavior in vitro. Mechanistically, HNRNPC maintains the mRNA stability of IRAK1 in an m6A-dependent manner, resulting in activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which was necessary for the malignant behavior of glioma. Our findings demonstrate the HNRNPC-IRAK1-MAPK axis as a crucial carcinogenic factor for glioma and the novel underlying mechanism of IRAK1 upregulation, which provides a rationale for therapeutically targeting epitranscriptomic modulators in glioma.


Asunto(s)
Progresión de la Enfermedad , Glioma , Ribonucleoproteína Heterogénea-Nuclear Grupo C , Quinasas Asociadas a Receptores de Interleucina-1 , Sistema de Señalización de MAP Quinasas , ARN Mensajero , Humanos , Glioma/genética , Glioma/patología , Glioma/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas/genética , Ratones , Estabilidad del ARN/genética , Ratones Desnudos , Animales , Regulación Neoplásica de la Expresión Génica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Femenino , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Pronóstico
3.
J Hazard Mater ; 465: 133087, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38035524

RESUMEN

It is still limited that how the microalgal toxin okadaic acid (OA) affects the intestinal microbiota in marine fishes. In the present study, adult marine medaka Oryzias melastigma was exposed to the environmentally relevant concentration of OA (5 µg/L) for 10 days, and then recovered in fresh seawater for 10-days depuration. Analysis of taxonomic composition and diversity of the intestinal microbiota, as well as function prediction analysis and histology observation were carried out in this study. Functional prediction analysis indicated that OA potentially affected the development of colorectal cancer, protein and carbohydrate digestion and absorption functions, and development of neurodegenerative diseases like Parkinson's disease, which may be associated with changes in Proteobacteria and Firmicutes in marine medaka. Significant increases of C-reactive protein (CRP) and inducible nitric oxide synthase (iNOS) levels, as well as the changes of histology of intestinal tissue demonstrated that an intestinal inflammation was induced by OA exposure in marine medaka. This study showed that the environmental concentrations of OA could harm to the intestinal microbiota thus threatening the health of marine medaka, which hints that the chemical ecology of microalgal toxins should be paid attention to in future studies.


Asunto(s)
Microbioma Gastrointestinal , Oryzias , Contaminantes Químicos del Agua , Animales , Oryzias/fisiología , Ácido Ocadaico , Ecología
4.
Mol Cell Endocrinol ; 577: 112029, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37495090

RESUMEN

Diabetes mellitus is a metabolic disease that is characterized by elevated blood sugar. Although glucagon-like peptide-1 receptor agonists (GLP-1RA) lower blood glucose in a glucose-dependent manner, most of them are macromolecule polypeptides. Macromolecular peptides are relatively expensive and inconvenient compared with small molecules. Therefore, this study sought to identify the small molecules binding to GLP-1R via cell membrane chromatography (CMC), confirm their agonistic activity, and further study its beneficial effects in a mouse model of type 2 diabetes mellitus (T2DM) induced by a combination of high-fat diet and streptozotocin. We used CMC, calcium imaging and molecular docking techniques to screen and identify the potential small molecule Schisandrin B (Sch B), which exhibits a strong binding effect to GLP-1R, from the small molecule library of traditional Chinese medicine. Through in-vitro experiments, we found that Sch B stimulated insulin secretion in ß-TC-6 cells, while GLP-1R antagonist Exendin9-39, adenylate cyclase inhibitor SQ22536, and protein kinase A (PKA) inhibitor H89 could significantly inhibit the insulin secretion induced by Sch B. In vivo, Sch B significantly improved fasting blood glucose levels, intraperitoneal glucose tolerance test damage, and the status of pancreatic tissue damage, and reduced serum insulin levels, total cholesterol, triglyceride and low density lipoprotein in T2DM mice. These results indicate that Sch B alleviates T2DM by promoting insulin release through the GLP-1R/cAMP/PKA signaling pathway, suggesting that Sch B may be a potential GLP-1RA, which is expected to provide a new therapeutic strategy for the prevention and treatment of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Animales , Secreción de Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucemia , Simulación del Acoplamiento Molecular , Receptores de Glucagón/metabolismo , Insulina/metabolismo , Péptidos/farmacología , Receptor del Péptido 1 Similar al Glucagón/metabolismo
5.
Aquat Toxicol ; 260: 106576, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37196507

RESUMEN

The lipophilic okadaic acid (OA)-group toxins produced by some species of Dinophysis spp. and Prorocentrum spp. marine dinoflagellates have been frequently and widely detected in natural seawater environments, e.g. 2.1∼1780 ng/L in Spanish sea and 5.63∼27.29 ng/L in the Yellow Sea of China. The toxicological effects of these toxins dissolved in seawater on marine fish is still unclear. Effects of OA on the embryonic development and 1-month old larvae of marine medaka (Oryzias melastigma) were explored and discussed in this study. Significantly increased mortality and decreased hatching rates occurred for the medaka embryos exposed to OA at 1.0 µg/mL. Diverse malformations including spinal curvature, dysplasia and tail curvature were also observed in the embryos exposed to OA and the heart rates significantly increased at 11 d post fertilization. The 96 h LC50 of OA for 1-month old larvae was calculated at 3.80 µg/mL. The reactive oxygen species (ROS) was significantly accumulated in medaka larvae. Catalase (CAT) enzyme activity was significantly increased in 1-month old larvae. Acetylcholinesterase (AChE) activity significantly increased with a dose-dependent pattern in 1-month old larvae. Differentially expressed genes (DEGs) were enriched in 11 KEGG pathways with Q value < 0.05 in 1-month old medaka larvae exposed to OA at 0.38 µg/mL for 96 h, which were mainly related to cell division and proliferation, and nervous system. Most of DEGs involved in DNA replication, cell cycle, nucleotide excision repair, oocyte meiosis, and mismatch repair pathways were significantly up-regulated, while most of DEGs involved in synaptic vesicle cycle, glutamatergic synapse, and long-term potentiation pathways were markedly down-regulated. This transcriptome analysis demonstrated that a risk of cancer developing was possibly caused by OA due to DNA damage in marine medaka larvae. In addition, the neurotoxicity of OA was also testified for marine fish, which potentially cause major depressive disorder (MDD) via the up-regulated expression of NOS1 gene. The genotoxicity and neurotoxicity of OA to marine fish should be paid attention to and explored further in the future.


Asunto(s)
Trastorno Depresivo Mayor , Dinoflagelados , Oryzias , Contaminantes Químicos del Agua , Animales , Oryzias/metabolismo , Ácido Ocadaico/toxicidad , Ácido Ocadaico/metabolismo , Acetilcolinesterasa/metabolismo , Contaminantes Químicos del Agua/toxicidad , Larva
6.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216900

RESUMEN

MOTIVATION: With the great number of peptide sequences produced in the postgenomic era, it is highly desirable to identify the various functions of therapeutic peptides quickly. Furthermore, it is a great challenge to predict accurate multi-functional therapeutic peptides (MFTP) via sequence-based computational tools. RESULTS: Here, we propose a novel multi-label-based method, named ETFC, to predict 21 categories of therapeutic peptides. The method utilizes a deep learning-based model architecture, which consists of four blocks: embedding, text convolutional neural network, feed-forward network, and classification blocks. This method also adopts an imbalanced learning strategy with a novel multi-label focal dice loss function. multi-label focal dice loss is applied in the ETFC method to solve the inherent imbalance problem in the multi-label dataset and achieve competitive performance. The experimental results state that the ETFC method is significantly better than the existing methods for MFTP prediction. With the established framework, we use the teacher-student-based knowledge distillation to obtain the attention weight from the self-attention mechanism in the MFTP prediction and quantify their contributions toward each of the investigated activities. AVAILABILITY AND IMPLEMENTATION: The source code and dataset are available via: https://github.com/xialab-ahu/ETFC.


Asunto(s)
Aprendizaje Profundo , Humanos , Redes Neurales de la Computación , Péptidos/uso terapéutico , Programas Informáticos
7.
Ann Plast Surg ; 90(5): 425-431, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37115917

RESUMEN

BACKGROUND: The aim of this retrospective study was to compare the clinical outcomes of total endoscopic transaxillary (TET) breast augmentation with those of non-TET (NTET) breast augmentation. For the purposes of this study, the term NTET refers to the combination of blunt dissection and endoscopic techniques, whereas TET did not involve blunt dissection. METHODS: We conducted a retrospective review of 119 consecutive cases of primary breast augmentation from May 1, 2020, to August 31, 2020. The primary outcomes were the number of drainage days and pain scores as assessed using the visual analog scale on the first postoperative day. The secondary outcomes were the daily drainage volume recorded during the postoperative drainage days, the presence of postoperative daily pain that required the administration of tramadol for relief, reoperation rate, and operative time. RESULTS: The number of drainage days was significantly lower in the TET group than in the NTET group (TET vs NTET: 2.56 ± 0.57 vs 3.78 ± 1.30 days, P = 0.000). The visual analog scale score on the first postoperative day was significantly lower in the TET group than in the NTET group (TET vs NTET: 4.96 ± 0.63 vs 5.93 ± 0.93, P = 0.000). CONCLUSIONS: We observed that the major outcomes of the TET group were more favorable than those of the NTET group. Based on our results, we recommend the avoidance of blunt dissection during endoscopic transaxillary breast augmentation. LEVEL OF EVIDENCE: III.


Asunto(s)
Implantación de Mama , Humanos , Implantación de Mama/métodos , Implantes de Mama , Endoscopía/métodos , Mamoplastia , Dolor Postoperatorio/etiología , Estudios Retrospectivos
8.
Exp Neurol ; 365: 114414, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37075971

RESUMEN

Type 2 diabetes mellitus (T2DM) is strongly associated with an increased risk of developing cognitive dysfunction. Numerous studies have indicated that erythropoietin (EPO) has neurotrophic effects. Ferroptosis has been reported to be associated with diabetic cognitive dysfunction. However, the impact of EPO on T2DM-associated cognitive dysfunction and its protective mechanism remain unclear. To evaluate the effects of EPO on diabetes-associated cognitive dysfunction, we constructed a T2DM mouse model and found that EPO not only decreased fasting blood glucose but also ameliorated hippocampal damage in the brain. The Morris water maze test indicated that EPO improved cognitive impairments in diabetic mice. Moreover, a ferroptosis inhibitor improved cognitive dysfunction in mice with T2DM in vivo. Furthermore, a ferroptosis inhibitor, but not other cell death inhibitors, mostly rescued high-glucose damaged PC12 cell viability. EPO had a similar effect as the ferroptosis inhibitor, which increased cell viability in the presence of a ferroptosis inducer. In addition, EPO reduced lipid peroxidation, iron levels, and regulated ferroptosis-related expression of proteins in vivo and in vitro. These findings indicate that EPO ameliorates T2DM-associated cognitive dysfunction, which might be related to decreasing iron overload and inhibiting ferroptosis.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Eritropoyetina , Ferroptosis , Sobrecarga de Hierro , Ratones , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Eritropoyetina/uso terapéutico , Eritropoyetina/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Epoetina alfa , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/tratamiento farmacológico
9.
Artículo en Inglés | MEDLINE | ID: mdl-35297352

RESUMEN

BACKGROUND: Ovarian cancer remains a leading cause of mortality in women. It is known that long non-coding RNA (lncRNA) controls various biological processes and pathogenesis of many diseases, including cancers. This study aimed to determine whether LINC00936 and microRNA-221-3p (miR-221-3p) influence the laminin alpha 3 chain gene (LAMA3) in the development of ovarian cancer. METHODS: The expressions of LINC00936, miR-221-3p, and LAMA3 in ovarian cancer and adjacent tissues were assessed. Furthermore, ovarian cancer cells were transfected with vectors with overexpressed LINC00936, miR-221-3p mimic, miR-221-3p inhibitor, and si-LAMA3 to elucidate their functions in ovarian cancer cell proliferation, migration, invasion, angiogenesis, and tumorigenesis. The binding relationship between LINC00936 and miR-221-3p and the relationship between miR-221-3p and LAMA3 were verified to explore the mechanism of action of LINC00936 in ovarian cancer. LINC00936 binds to miR-221-3p as a ceRNA and regulates the expression of LAMA3. RESULTS: LINC00936 and LAMA3 were poorly expressed, while miR-221-3p was highly expressed in ovarian cancer tissues. Over-expression of LINC00936 contributed to decreasing miR- 221-3p expression and increasing LAMA3 expression. LINC00936 overexpression or miR-221- 3p silencing downregulated the levels of PCNA, MMP-2, MMP-9, and VEGF and decreased cell proliferation, migration, invasion, angiogenesis, and ovarian cancer tumorigenesis. CONCLUSION: Collectively, overexpression of LINC00936 suppressed the development of ovarian cancer by competitively binding to miR-221-3p and controlling LAMA3 expression. These results could serve as a novel theoretical base for the treatment of ovarian cancer.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/genética , MicroARNs/genética
10.
Front Oncol ; 12: 942964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353553

RESUMEN

The underlying molecular mechanisms and evolutionary patterns of lung cancer metastasis remain unclear, resulting in a lack of effective indicators for early diagnosis of metastasis. We retrospectively analyzed 117 patients with primary non-small cell lung cancer (NSCLC) admitted to Tongji Hospital of Tongji University in 2021, of which 93 patients with tumor metastasis were set as the metastasis group. 24 patients without metastasis were set as the non-metastasis group. The differences of each index in the two groups of patients and the expression levels in different TNM stages were compared. This study intends to evaluate the diagnostic value and net clinical benefit of common blood-related indicators Neutrophil/lymphocyte (NLR), lymphocyte/monocyte (LMR), High density lipoprotein/neutrophil (HNR), High density lipoprotein/monocyte (HMR) and combined assays in NSCLC metastasis for the early diagnosis of patients with NSCLC metastasis. It was found that the level of NLR was higher in metastatic NSCLC than non-metastatic, but the level of LMR, HNR and HMR was lower. The levels of NLR, LMR, HNR and HMR in patients with different TNM stages showed that NLR levels increased with TNM stage, while LMR, HNR and HMR levels decreased. The threshold probability range of the 4 combined tests was greater and the overall clinical benefit rate was higher compared to the individual tests. Our findings suggest that NLR, LMR, HNR and HMR have better diagnostic value for NSCLC metastasis. This study provides a clinical basis for investigating the mechanisms by which immune cells and lipid metabolism-related proteins remodel the microenvironment prior to NSCLC metastasis.

11.
PLoS Comput Biol ; 18(9): e1010511, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36094961

RESUMEN

Prediction of therapeutic peptide is a significant step for the discovery of promising therapeutic drugs. Most of the existing studies have focused on the mono-functional therapeutic peptide prediction. However, the number of multi-functional therapeutic peptides (MFTP) is growing rapidly, which requires new computational schemes to be proposed to facilitate MFTP discovery. In this study, based on multi-head self-attention mechanism and class weight optimization algorithm, we propose a novel model called PrMFTP for MFTP prediction. PrMFTP exploits multi-scale convolutional neural network, bi-directional long short-term memory, and multi-head self-attention mechanisms to fully extract and learn informative features of peptide sequence to predict MFTP. In addition, we design a class weight optimization scheme to address the problem of label imbalanced data. Comprehensive evaluation demonstrate that PrMFTP is superior to other state-of-the-art computational methods for predicting MFTP. We provide a user-friendly web server of PrMFTP, which is available at http://bioinfo.ahu.edu.cn/PrMFTP.


Asunto(s)
Algoritmos , Péptidos , Péptidos/uso terapéutico
12.
J Oncol ; 2022: 3922299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813860

RESUMEN

Acute lung injury (ALI) is a severe form of sepsis that is associated with a high rate of morbidity and death in critically ill individuals. The emergence of ALI is the result of several factors at work. Case mortality rates might range from 40% to 70%. Researchers have discovered that epigenetic alterations are important in the pathophysiology of ALI and that using epigenetic inhibitors may help reduce symptoms. In embryonic development, circadian rhythm, the cell cycle, and cancer, methylation of m6A seems to be relevant all along the way. According to recent research, posttranscriptional methylation is a key player in the development of alveolar lymphoma. In this study, we clustered ALI based on m6A-related factors, analyzed different classes of immune cell enrichment and inflammatory cytokine expression, screened clustered differential genes for ALI to construct coexpression networks, screened key ALI genes potentially regulated by m6A modifications, and then typed the disease based on key genes to compare the consistency of different clustering results. Our findings have revealed a hitherto undiscovered prognostic sign and a therapeutic target for ALI therapy in m6A and immune invading cells, respectively.

13.
J Oncol ; 2022: 4499876, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799607

RESUMEN

Application of extracellular vesicles (EVs) for cancer treatment has been well-documented. We probed into the potential role of cervical cancer cells-secreted EVs by transferring miR-146a-5p in cervical cancer. After characterization of miR-146a-5p expression in clinical cervical cancer tissue samples, gain- and loss-of-function experiments were implemented to test the effect of miR-146a-5p on the invasion, epithelial-mesenchymal transition (EMT), and anoikis in cervical cancer cells. EVs were isolated from high-metastatic cervical cancer cells, after which their effects on the malignant behaviors of low-metastatic cervical cancer cells were assessed in a co-culture system. Luciferase assay was implemented to validate the putative binding relationship between miR-146a-5p and WWC2, followed by further investigation of downstream pathway (Hippo-YAP). Finally, nude mouse lung metastasis model was developed for in vivo validation. miR-146a-5p was elevated in cervical cancer tissues and high miR-146a-5p expression promoted the metastatic potential of cervical cancer cells through enhancing their invasiveness and anoikis resistance, and inducing EMT. Furthermore, miR-146a-5p carried by EVs secreted by highly metastatic cervical cancer cells could promote the metastasis of low-metastatic cervical cancer cells. Mechanistically, miR-146a-5p targeted WWC2 to activate YAP, by which it inhibited the phosphorylation of cofilin, and promoted the process of cofilin-mediated depolymerization of F-actin to G-actin. In vivo data demonstrated that EVs-carried miR-146a-5p promoted tumor metastasis through the WWC2/YAP axis. Cancer-derived EVs delivered pro-metastatic miR-146a-5p to regulate the actin dynamics in cervical cancer, thereby leading to cancer metastasis. This experiment highlighted an appealing therapeutic modality for cervical cancer.

14.
J Immunol Res ; 2022: 7280977, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795532

RESUMEN

Ulcerative colitis (UC) is an inflammatory bowel disease characterized by persistent colon inflammation. N6-methyladenosine (m6A) methylation is one of the most prevalent RNA modifications with key roles in both normal and illness, but m6A methylation in ulcerative colitis is unknown. This research investigated m6A methylation in UC. We examined the expression of known m6A RNA methylation regulators in UC using the Gene Expression Omnibus database (GEO database). First, we used m6A regulators to examine m6A change in UC samples. These two patient groups were created by clustering three m6A gene expression datasets. These genes were then utilized to build an m6A gene network using WGCNA and PPI. These networks were built using differentially expressed genes. The 12 m6A regulators were found to be dispersed throughout the chromosome. The study's data were then connected, revealing positive or negative relationships between genes or signaling pathways. Then, PCA of the 12 m6A-regulated genes indicated that the two patient groups could be discriminated in both PC1 and PC2 dimensions. The ssGSEA algorithm found that immune invading cells could be easily distinguished across diverse patient groups. Both groups had varied levels of popular cytokines. The differential gene analysis of the two samples yielded 517 genes like FTO and RFX7. It found 9 hub genes among 121 genes in the blue module, compared their expression in two groups of samples, and found that the differences in expression of these 9 genes were highly significant. The identification of 9 possible m6A methylation-dependent gene regulatory networks suggests that m6A methylation is involved in UC pathogenesis. Nine candidate genes have been identified as possible markers for assessing UC severity and developing innovative UC targeted therapeutic approaches.


Asunto(s)
Adenosina/análogos & derivados , Colitis Ulcerosa , Adenosina/genética , Adenosina/inmunología , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/genética , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Humanos , ARN/genética , ARN/inmunología
15.
J Oncol ; 2022: 6990955, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602301

RESUMEN

Background: Exosomal microRNAs (miRNAs) have been linked to the genesis and progression of certain cancers. The role and regulation mechanism of cancer-derived exosomal miRNAs in CRC, however, remain unknown. Methods: To address this, we first used miRNA sequencing to describe the miRNA profiles of circulating exosomes in order to identify miRNAs that were differently expressed between patients with CRC and healthy controls. Transmission electron microscopy, nanoparticle tracking analysis (NTA), and western blot were used to analyze exosomes generated from CRC cells. CCK-8, wound healing, and Transwell tests were used to see whether exosomes affected CRC cell proliferation, metastasis, and apoptosis, respectively. We chose and identified hsa-miR-3937, which was abundant in tumor-generated exosomes, based on earlier RNA sequencing data of exosomes obtained and extracted from seven matched specimens of tumor tissues and surrounding normal tissues of CRC patients. Results: The role of hsa-miR-3937 in CRC cells was found, and silencing of hsa-miR-3937 decreased CRC cell invasion and migration in a Transwell experiment. Furthermore, we discovered that there was no link between hsa-miR-3937 expression and CRC cell apoptosis. Initially, it was discovered that BCL2L12 was the target gene of hsa-miR-3937, and the TCGA database highlighted the potential therapeutic relevance of BCL2L12. Furthermore, to identify hsa-miR-3937 as a biomarker of CRC, we used peripheral blood samples rather than patient tissues and extracted exosomes from plasma samples. To assess the expression levels and predictive usefulness of plasma exosomal hsa-miR-3937 in CRC, we performed RT-qPCR to identify hsa-miR-3937 levels in all samples. We also gathered clinicopathological information in order to look for links between aberrant hsa-miR-3937 expression and clinicopathological characteristics. The pathologic stage of CRC patients was linked to hsa-miR-3937 expression levels, and the same was true for the T stage. ROC curve study revealed that hsa-miR-3937 outperforms CEA and CA199. The combination of hsa-miR-3937, CEA, and CA199 exhibited the highest sensitivity for CRC diagnosis. Conclusions: Our findings show that the tumor-originated exosomal hsa-miR-3937 is a potential and effective liquid biopsy marker for colorectal cancer detection and therapy.

16.
J Immunol Res ; 2022: 4012920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35497876

RESUMEN

Tumors may develop a variety of immune evasion mechanisms during the progression of colorectal cancer (CRC). Here, we intended to explore the mechanism of histone methyltransferase SETDB1 in immune evasion in CRC. The expression of SETDB1, microRNA-22 (miR-22), BATF3, PD-L1, and FOSB in CRC tissues and cells was determined with their interactions analyzed also. Gain-of-function and loss-of-function approaches were employed to evaluate the effects of the SETDB1/FOSB/miR-22/BATF3/PD-L1 axis on T cell function, immune cell infiltration, and tumorigenesis. Aberrant high SETDB1 expression in CRC was positively associated with PD-L1 expression. SETDB1 negatively regulated miR-22 expression by downregulating FOSB expression, while miR-22 downregulated PD-L1 expression via targeting BATF3. Furthermore, SETDB1 silencing promoted the T cell-mediated cytotoxicity to tumor cells via the FOSB/miR-22/BATF3/PD-L1 axis and hindered CRC tumor growth in mice while leading to decreased immune cell infiltration. Taken together, SETDB1 could activate the BATF3/PD-L1 axis by inhibiting FOSB-mediated miR-22 and promote immune evasion in CRC, which provides a better understanding of the mechanisms underlying immune evasion in CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Animales , Antígeno B7-H1/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Neoplasias Colorrectales/genética , Regulación hacia Abajo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Evasión Inmune , Ratones , MicroARNs/genética , Proteínas Proto-Oncogénicas c-fos , Proteínas Represoras/metabolismo
17.
Bioengineered ; 13(1): 1942-1951, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35019820

RESUMEN

This study determines the effect of Nab-paclitaxel in combination with IL-15 fusion protein, containing IL-15 and an anti-HSA nanobody domain, on colorectal cancer bearing mice. In vitro binding test of IL15 fusion protein to HSA and Nab-paclitaxel, as well as CTLL-2 cell stimulation assay were performed. The tumor inhibitory effects of Nab-paclitaxel in combination with IL-15 fusion protein was evaluated in the HCT116 bearing murine model. Moreover, the population and function of cytotoxic T cells and M1 macrophages, as well as MDSCs and Treg cells, were also further examined. As a result, combination therapy of Nab-paclitaxel and IL-15 fusion protein effectively inhibits the tumor growth and produced a 78% reduction in tumor size for HCT116, as compared to vehicle group. In the TDLN for the combination group, there were 18% of CD8+ IFN-γ + T-cells and 0.47% CD4+CD25+FOXP3+ regulatory T-cells, as opposed to 5.0% and 5.1%, respectively, for the model control group. Combination therapy further exhibited enhanced suppressive effects on the accumulation of CD11b+GR-1+ MDSC in spleen and bone marrow. Furthermore, Nab-paclitaxel and IL-15 fusion protein showed a significant suppression of NF-κB-mediated immune suppressive markers and increased expression of CD8, Granzyme B, CD62L, CD49b, and CD86 without obvious organ toxicity. In conclusion, combination therapy of Nab-paclitaxel and IL-15 fusion protein can effectively stimulate the antitumor activity of immune effector cells, thereby inhibiting immunosuppressive cells within the TME of colorectal cancer, and the overall therapeutic effect has a significant advantage over monotherapy.AbbreviationsInterleukin 15, IL-15; Human serum albumin, HSA; Myeloid-derived suppressor cells, MDSC; Albumin binding domain, ABD; Tumor drainage lymph node, TDLN; Natural killer (NK); Tumor-draining lymph node (TDLN); Tumor infiltrating lymphocyte, TIL; Immunogenic cell death, ICD; Enhanced permeability retention, EPR; Liposomal doxorubicin, Doxil; 5-fluorouracil, 5-FU.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Albúminas/farmacología , Animales , Antineoplásicos Inmunológicos/farmacología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Células HCT116 , Humanos , Interleucina-15/farmacología , Ratones , Paclitaxel/farmacología , Anticuerpos de Dominio Único/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Cancer ; 13(2): 579-588, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069904

RESUMEN

Recently, antibody-based therapeutic agents are becoming most leading biologics for treating many diseases, especially for cancer. However, large-scale application of antibody drugs is still hampered by high cost and complex technical process. Endogenous expression of proteins or antibodies can be achieved by applying in vitro transcription (IVT) technique to produce mRNA and then deliver into body, which supplies opportunity to avoid many disadvantages in antibody production as well as clinical applications. Here, we designed the IVT-mRNA encoding the Pembrolizumab, as a commercial anti-PD-1 monoclonal antibody (mAb). The in vitro functional properties and in vivo antitumor activities of the Pembrolizumab expressed from mRNA were both assessed. Maximized expression level of the Pembrolizumab from IVT-mRNA was achieved via optimizing the usage of signal peptide and molar ratio of heavy/light chain. Then the mRNA was further formulated by lipid nanoparticle (LNP), which enable efficient in vivo delivery and protect mRNA from degradation. Intravenously delivered the single dose of mRNA-LNPs in mice resulted in duration of serum Pembrolizumab level over 25 µg/mL more than 35 days. Pharmacokinetic study exhibited significantly enhanced drug exposure of mRNA-encoded mAbs compared with direct injection of Pembrolizumab at same dose. Chronic treatment of the tumor-bearing mice with LNP-encapsulated Pembrolizumab mRNA effectively downregulated the growth of intestinal tumors and improved the animal survival. In brief, our present research demonstrated that the application of LNP-encapsulated IVT-mRNA can change the human body into a protein drug manufacturing site to express full-size mAbs for treating cancer and hold potential to be a novel alternative to protein-based therapies.

19.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34651655

RESUMEN

The bioactive peptide has wide functions, such as lowering blood glucose levels and reducing inflammation. Meanwhile, computational methods such as machine learning are becoming more and more important for peptide functions prediction. Most of the previous studies concentrate on the single-functional bioactive peptides prediction. However, the number of multi-functional peptides is on the increase; therefore, novel computational methods are needed. In this study, we develop a method MLBP (Multi-Label deep learning approach for determining the multi-functionalities of Bioactive Peptides), which can predict multiple functions including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory and anti-microbial simultaneously. MLBP model takes the peptide sequence vector as input to replace the biological and physiochemical features used in other peptides predictors. Using the embedding layer, the dense continuous feature vector is learnt from the sequence vector. Then, we extract convolution features from the feature vector through the convolutional neural network layer and combine with the bidirectional gated recurrent unit layer to improve the prediction performance. The 5-fold cross-validation experiments are conducted on the training dataset, and the results show that Accuracy and Absolute true are 0.695 and 0.685, respectively. On the test dataset, Accuracy and Absolute true of MLBP are 0.709 and 0.697, with 5.0 and 4.7% higher than those of the suboptimum method, respectively. The results indicate MLBP has superior prediction performance on the multi-functional peptides identification. MLBP is available at https://github.com/xialab-ahu/MLBP and http://bioinfo.ahu.edu.cn/MLBP/.


Asunto(s)
Aprendizaje Profundo , Aprendizaje Automático , Redes Neurales de la Computación , Péptidos
20.
Front Oncol ; 12: 1118042, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591456

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2022.942964.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA