Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Bone Miner Res ; 38(4): 597-614, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36680558

RESUMEN

Chronic high-altitude hypoxia induces irreversible abnormalities in various organisms. Emerging evidence indicates that hypobaric hypoxia markedly suppresses bone mass and bone strength. However, few effective means have been identified to prevent such bone deficits. Here, we assessed the potential of pulsed electromagnetic fields (PEMFs) to noninvasively resist bone deterioration induced by hypobaric hypoxia. We observed that exogenous PEMF treatment at 15 Hz and 20 Gauss (Gs) improved the cancellous and cortical bone mass, bone microstructure, and skeletal mechano-properties in rats subjected to chronic exposure of hypobaric hypoxia simulating an altitude of 4500 m for 6 weeks by primarily modulating osteoblasts and osteoblast-mediated bone-forming activity. Moreover, our results showed that whereas PEMF stimulated the functional activity of primary osteoblasts in hypoxic culture in vitro, it had negligible effects on osteoclasts and osteocytes exposed to hypoxia. Mechanistically, the primary cilium was found to function as the major electromagnetic sensor in osteoblasts exposed to hypoxia. The polycystins PC-1/PC-2 complex was identified as the primary calcium channel in the primary cilium of hypoxia-exposed osteoblastic cells responsible for the detection of external PEMF signals, and thereby translated these biophysical signals into intracellular biochemical events involving significant increase in the intracellular soluble adenylyl cyclase (sAC) expression and subsequent elevation of cyclic adenosine monophosphate (cAMP) concentration. The second messenger cAMP inhibited the transcription of oxygen homeostasis-related hypoxia-inducible factor 1-alpha (HIF-1α), and thus enhanced osteoblast differentiation and improved bone phenotype. Overall, the present study not only advances our understanding of bone physiology at high altitudes, but more importantly, proposes effective means to ameliorate high altitude-induced bone loss in a noninvasive and cost-effective manner. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Mal de Altura , Ratas , Animales , Mal de Altura/metabolismo , Campos Electromagnéticos , Cilios , Huesos , Hipoxia/complicaciones , Hipoxia/metabolismo , Osteoblastos/metabolismo , AMP Cíclico/metabolismo
2.
Sci Adv ; 8(34): eabq0222, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36001662

RESUMEN

Radiotherapy increases tumor cure and survival rates; however, radiotherapy-induced bone damage remains a common issue for which effective countermeasures are lacking, especially considering tumor recurrence risks. We report a high-specificity protection technique based on noninvasive electromagnetic field (EMF). A unique pulsed-burst EMF (PEMF) at 15 Hz and 2 mT induces notable Ca2+ oscillations with robust Ca2+ spikes in osteoblasts in contrast to other waveforms. This waveform parameter substantially inhibits radiotherapy-induced bone loss by specifically modulating osteoblasts without affecting other bone cell types or tumor cells. Mechanistically, primary cilia are identified as major PEMF sensors in osteoblasts, and the differentiated ciliary expression dominates distinct PEMF sensitivity between osteoblasts and tumor cells. PEMF-induced unique Ca2+ oscillations depend on interactions between ciliary polycystins-1/2 and endoplasmic reticulum, which activates the Ras/MAPK/AP-1 axis and subsequent DNA repair Ku70 transcription. Our study introduces a previously unidentified method against radiation-induced bone damage in a noninvasive, cost-effective, and highly specific manner.

3.
Front Oncol ; 12: 793805, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155237

RESUMEN

Semaphorins are a large class of secreted or membrane-bound molecules. It has been reported that semaphorins play important roles in regulating several hallmarks of cancer, including angiogenesis, metastasis, and immune evasion. Semaphorins and their receptors are widely expressed on tumor cells and immune cells. However, the biological role of semaphorins in tumor immune microenvironment is intricate. The dysregulation of semaphorins influences the recruitment and infiltration of immune cells, leading to abnormal anti-tumor effect. Although the underlying mechanisms of semaphorins on regulating tumor-infiltrating immune cell activation and functions are not fully understood, semaphorins can notably be promising immunotherapy targets for cancer.

4.
Braz J Med Biol Res ; 54(12): e11550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34730682

RESUMEN

Following radiotherapy, patients have decreased bone mass and increased risk of fragility fractures. Diabetes mellitus (DM) is also reported to have detrimental effects on bone architecture and quality. However, no clinical or experimental study has systematically characterized the bone phenotype of the diabetic patients following radiotherapy. After one month of streptozotocin injection, three-month-old male rats were subjected to focal radiotherapy (8 Gy, twice, at days 1 and 3), and then bone mass, microarchitecture, and turnover as well as bone cell activities were evaluated at 2 months post-irradiation. Micro-computed tomography results demonstrated that DM rats exhibited greater deterioration in trabecular bone mass and microarchitecture following irradiation compared with the damage to bone structure induced by DM or radiotherapy. The serum biochemical, bone histomorphometric, and gene expression assays revealed that DM combined with radiotherapy showed lower bone formation rate, osteoblast number on bone surface, and expression of osteoblast-related markers (ALP, Runx2, Osx, and Col-1) compared with DM or irradiation alone. DM plus irradiation also caused higher bone resorption rate, osteoclast number on bone surface, and expression of osteoclast-specific markers (TRAP, cathepsin K, and calcitonin receptor) than DM or irradiation treatment alone. Moreover, lower osteocyte survival and higher expression of Sost and DKK1 genes (two negative modulators of Wnt signaling) were observed in rats with combined DM and radiotherapy. Together, these findings revealed a higher deterioration of the diabetic skeleton following radiotherapy, and emphasized the clinical importance of health maintenance.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Huesos , Humanos , Masculino , Osteogénesis , Ratas , Estreptozocina , Microtomografía por Rayos X
5.
J Neurotrauma ; 38(6): 765-776, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33108939

RESUMEN

Spinal cord injury (SCI) leads to extensive bone loss and high incidence of low-energy fractures. Pulsed electromagnetic fields (PEMF) treatment, as a non-invasive biophysical technique, has proven to be efficient in promoting osteogenesis. The potential osteoprotective effect and mechanism of PEMF on SCI-related bone deterioration, however, remain unknown. The spinal cord of rats was transected at vertebral level T12 to induce SCI. Thirty rats were assigned to the control, SCI, and SCI+PEMF groups (n = 10). One week after surgery, the SCI+PEMF rats were subjected to PEMF (2.0 mT, 15 Hz, 2 h/day) for eight weeks. Micro-computed tomography results showed that PEMF significantly ameliorated trabecular and cortical bone microarchitecture deterioration induced by SCI. Three-point bending and nanoindentation assays revealed that PEMF significantly improved bone mechanical properties in SCI rats. Serum biomarker and bone histomorphometric analyses demonstrated that PEMF enhanced bone formation, as evidenced by significant increase in serum osteocalcin and P1NP, mineral apposition rate, and osteoblast number on bone surface. The PEMF had no impact, however, on serum bone-resorbing cytokines (TRACP 5b and CTX-1) or osteoclast number on bone surface. The PEMF also attenuated SCI-induced negative changes in osteocyte morphology and osteocyte survival. Moreover, PEMF significantly increased skeletal expression of canonical Wnt ligands (Wnt1 and Wnt10b) and stimulated their downstream p-GSK3ß and ß-catenin expression in SCI rats. This study demonstrates that PEMF can mitigate the detrimental consequence of SCI on bone quantity/quality, which might be associated with canonical Wnt signaling-mediated bone formation, and reveals that PEMF may be a promising biophysical approach for resisting osteopenia/osteoporosis after SCI in clinics.


Asunto(s)
Densidad Ósea/fisiología , Magnetoterapia/métodos , Osteogénesis/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Vía de Señalización Wnt/fisiología , Animales , Campos Electromagnéticos , Masculino , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/diagnóstico por imagen , Vértebras Torácicas/diagnóstico por imagen , Vértebras Torácicas/lesiones , Microtomografía por Rayos X/métodos
6.
Braz. j. med. biol. res ; 54(12): e11550, 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1345563

RESUMEN

Following radiotherapy, patients have decreased bone mass and increased risk of fragility fractures. Diabetes mellitus (DM) is also reported to have detrimental effects on bone architecture and quality. However, no clinical or experimental study has systematically characterized the bone phenotype of the diabetic patients following radiotherapy. After one month of streptozotocin injection, three-month-old male rats were subjected to focal radiotherapy (8 Gy, twice, at days 1 and 3), and then bone mass, microarchitecture, and turnover as well as bone cell activities were evaluated at 2 months post-irradiation. Micro-computed tomography results demonstrated that DM rats exhibited greater deterioration in trabecular bone mass and microarchitecture following irradiation compared with the damage to bone structure induced by DM or radiotherapy. The serum biochemical, bone histomorphometric, and gene expression assays revealed that DM combined with radiotherapy showed lower bone formation rate, osteoblast number on bone surface, and expression of osteoblast-related markers (ALP, Runx2, Osx, and Col-1) compared with DM or irradiation alone. DM plus irradiation also caused higher bone resorption rate, osteoclast number on bone surface, and expression of osteoclast-specific markers (TRAP, cathepsin K, and calcitonin receptor) than DM or irradiation treatment alone. Moreover, lower osteocyte survival and higher expression of Sost and DKK1 genes (two negative modulators of Wnt signaling) were observed in rats with combined DM and radiotherapy. Together, these findings revealed a higher deterioration of the diabetic skeleton following radiotherapy, and emphasized the clinical importance of health maintenance.

7.
Stem Cell Res Ther ; 11(1): 442, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33059742

RESUMEN

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) have been used as important cell-based tools for clinical applications. Oxidative stress-induced apoptosis causes a low survival rate after transplantation, and the underlying mechanisms remain unknown. The endoplasmic reticulum (ER) and mitochondria are vital organelles regulated by adenosine monophosphate (AMP)-activated protein kinase (AMPK), especially during oxidative stress injury. Melatonin exerts an antioxidant effect by scavenging free radicals. Here, we aimed to explore whether cytoprotective melatonin relieves ER stress-mediated mitochondrial dysfunction through AMPK in BMSCs after oxidative stress injury. METHODS: Mouse BMSCs were isolated and exposed to H2O2 in the absence or presence of melatonin. Thereafter, cell damage, oxidative stress levels, mitochondrial function, AMPK activity, ER stress-related proteins, and apoptotic markers were measured. Additionally, the involvement of AMPK and ER stress in the melatonin-mediated protection of BMSCs against H2O2-induced injury was investigated using pharmacologic agonists and inhibitors. RESULTS: Melatonin improved cell survival and restored mitochondrial function. Moreover, melatonin intimately regulated the phosphorylation of AMPK and molecules associated with ER stress pathways. AMPK activation and ER stress inhibition following melatonin administration improved the mitochondrial membrane potential (MMP), reduced mitochondria-initiated oxidative damage, and ultimately suppressed apoptotic signaling pathways in BMSCs. Cotreatment with N-acetyl-L-cysteine (NAC) significantly enhanced the antioxidant effect of melatonin. Importantly, pharmacological AMPK activation/ER stress inhibition promoted melatonin-induced cytoprotection, while pharmacological AMPK inactivation/ER stress induction conferred resistance to the effect of melatonin against H2O2 insult. CONCLUSIONS: Our data also reveal a new, potentially therapeutic mechanism by which melatonin protects BMSCs from oxidative stress-mediated mitochondrial apoptosis, possibly by regulating the AMPK-ER stress pathway.


Asunto(s)
Melatonina , Células Madre Mesenquimatosas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis , Peróxido de Hidrógeno/toxicidad , Melatonina/metabolismo , Melatonina/farmacología , Células Madre Mesenquimatosas/metabolismo , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo
8.
Bone ; 133: 115266, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32044333

RESUMEN

Long-term glucocorticoid therapy is known to induce increased bone fragility and impaired skeletal regeneration potential. Growing evidence suggests that pulsed electromagnetic fields (PEMF) can accelerate fracture healing and increase bone mass both experimentally and clinically. However, how glucocorticoid-treated bone and bone cells respond to PEMF stimulation remains poorly understood. Here we tested the effects of PEMF on bone quantity/quality, bone metabolism, and porous implant osseointegration in rabbits treated with dexamethasone (0.5 mg/kg/day, 6 weeks). The micro-CT, histologic and nanoindentation results showed that PEMF ameliorated the glucocorticoid-mediated deterioration of cancellous and cortical bone architecture and intrinsic material properties. Utilizing the new porous titanium implant (Ti2448) with low toxicity and low elastic modulus, we found that PEMF stimulated bone ingrowth into the pores of implants and enhanced peri-implant bone material quality during osseous defect repair in glucocorticoid-treated rabbits. Dynamic histomorphometric results revealed that PEMF reversed the adverse effects of glucocorticoids on bone formation, which was confirmed by increased circulating osteocalcin and P1NP. PEMF also significantly attenuated osteocyte apoptosis, promoted osteoblast-related osteocalcin, Runx2 and Osx expression, and inhibited osteocyte-specific DKK1 and Sost expression (negative regulators of osteoblasts) in glucocorticoid-treated skeletons, revealing improved functional activities of osteoblasts and osteocytes. Nevertheless, PEMF exerted no effect on circulating bone-resorbing cytokines (serum TRAcP5b and CTX-1) or skeletal gene expression of osteoclast-specific markers (TRAP and cathepsin K). PEMF also significantly upregulated skeletal gene expression of canonical Wnt ligands (Wnt1, Wnt3a and Wnt10b), whereas PEMF did not alter non-canonical Wnt5a expression. This study demonstrates that PEMF treatment improves bone mass, strength and porous implant osseointegration in glucocorticoid-treated rabbits by promoting potent bone-anabolic action, which is associated with canonical Wnt-mediated improvement in osteoblast and osteocyte functions. This study provides a new treatment alternative for glucocorticoid-related bone disorders in a convenient and non-invasive manner.


Asunto(s)
Glucocorticoides , Oseointegración , Animales , Huesos , Campos Electromagnéticos , Glucocorticoides/efectos adversos , Porosidad , Conejos
9.
FASEB J ; 34(2): 3037-3050, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908035

RESUMEN

Pulsed electromagnetic fields (PEMFs) and whole-body vibration (WBV) are proved to partially preserve bone mass/strength in hindlimb-unloaded and ovariectomized animals. However, the potential age-dependent skeletal response to either PEMF or WBV has not been fully investigated. Moreover, whether the coupled "mechano-electro-magnetic" signals can induce greater osteogenic potential than single stimulation remains unknown. Herein, 5-month-old or 20-month-old rats were assigned to the Control, PEMF, WBV, and PEMF + WBV groups. After 8-week treatment, single PEMF/WBV enhanced bone mass, strength, and anabolism in 5-month-old rats, but not in 20-month-old rats. PEMF + WBV induced greater increase of bone quantity, quality, and anabolism than single PEMF/WBV in young adult rats. PEMF + WBV also inhibited bone loss in elderly rats by primarily improving osteoblast and osteocyte activity, but had no effects on bone resorption. PEMF + WBV upregulated the expression of various canonical Wnt ligands and downstream molecules (p-GSK-3ß and ß-catenin), but had no impacts on noncanonical Wnt5a expression in aged skeleton, revealing the potential involvement of canonical Wnt signaling in bone anabolism of PEMF + WBV. This study not only reveals much weaker responsiveness of aged skeleton to single PEMF/WBV relative to young adult skeleton, but also presents a novel noninvasive approach based on combinatorial treatment with PEMF + WBV for improving bone health and preserving bone quantity/quality (especially for age-related osteoporosis) with stronger anabolic effects.


Asunto(s)
Envejecimiento , Magnetoterapia , Osteoporosis , Esqueleto , Vibración , Animales , Masculino , Osteoporosis/metabolismo , Osteoporosis/fisiopatología , Osteoporosis/terapia , Ratas , Ratas Sprague-Dawley , Esqueleto/metabolismo , Esqueleto/fisiopatología
10.
Cell Biol Int ; 44(1): 216-228, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31448865

RESUMEN

Diabetic patients exhibit significant bone deterioration. Our recent findings demonstrate that mechanical vibration is capable of resisting diabetic bone loss, whereas the relevant mechanism remains unclear. We herein examined the effects of mechanical vibration on the activities and functions of osteocytes (the most abundant and well-recognized mechanosensitive cells in the bone) exposed to high glucose (HG). The osteocytic MLO-Y4 cells were incubated with 50 mM HG for 24 h, and then stimulated with 1 h/day mechanical vibration (0.5 g, 45 Hz) for 3 days. We found that mechanical vibration significantly increased the proliferation and viability of MLO-Y4 cells under the HG environment via the MTT, BrdU, and Cell Viability Analyzer assays. The apoptosis detection showed that HG-induced apoptosis in MLO-Y4 cells was inhibited by mechanical vibration. Moreover, increased cellular area, microfilament density, and anisotropy in HG-incubated MLO-Y4 cells were observed after mechanical vibration via the F-actin fluorescence staining. The real-time polymerase chain reaction and western blotting results demonstrated that mechanical vibration significantly upregulated the gene and protein expression of Wnt3a, ß-catenin, and osteoprotegerin (OPG) and decreased the sclerostin, DKK1, and receptor activator for nuclear factor-κB ligand (RANKL) expression in osteocytes exposed to HG. The enzyme-linked immunosorbent assay assays showed that mechanical vibration promoted the secretion of prostaglandin E2 and OPG, and inhibited the secretion of tumor necrosis factor-α and RANKL in the supernatant of HG-treated MLO-Y4 cells. Together, this study demonstrates that mechanical vibration improves osteocytic architecture and viability, and regulates cytokine expression and secretion in the HG environment, and implies the potential great contribution of the modulation of osteocytic activities in resisting diabetic osteopenia/osteoporosis by mechanical vibration.

11.
J Cell Physiol ; 234(7): 10588-10601, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30422320

RESUMEN

Growing evidence has shown that pulsed electromagnetic fields (PEMF) can modulate bone metabolism in vivo and regulate the activities of osteoblasts and osteoclasts in vitro. Osteocytes, accounting for 95% of bone cells, act as the major mechanosensors in bone for transducing external mechanical signals and producing cytokines to regulate osteoblastic and osteoclastic activities. Targeting osteocytic signaling pathways is becoming an emerging therapeutic strategy for bone diseases. We herein systematically investigated the changes of osteocyte behaviors, functions, and its regulation on osteoclastogenesis in response to PEMF. The osteocyte-like MLO-Y4 cells were exposed to 15 Hz PEMF stimulation with different intensities (0, 5, and 30 Gauss [G]) for 2 hr. We found that the cell apoptosis and cytoskeleton organization of osteocytes were regulated by PEMF with an intensity-dependent manner. Moreover, PEMF exposure with 5 G significantly inhibited apoptosis-related gene expression and also suppressed the gene and protein expression of the receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG) ratio in MLO-Y4 cells. The formation, maturation, and osteoclastic bone-resorption capability of in vitro osteoclasts were significantly suppressed after treated with the conditioned medium from PEMF-exposed (5 G) osteocytes. Our results also revealed that the inhibition of osteoclastic formation, maturation, and bone-resorption capability induced by the conditioned medium from 5 G PEMF-exposed osteocytes was significantly attenuated after abrogating primary cilia in osteocytes using the polaris siRNA transfection. Together, our findings highlight that PEMF with 5 G can inhibit cellular apoptosis, modulate cytoskeletal distribution, and decrease RANKL/OPG expression in osteocytes, and also inhibit osteocyte-mediated osteoclastogenesis, which requires the existence of primary cilia in osteocytes. This study enriches our basic knowledge for further understanding the biological behaviors of osteocytes and is also helpful for providing a more comprehensive mechanistic understanding of the effect of electromagnetic stimulation on bone and relevant skeletal diseases (e.g., bone fracture and osteoporosis).


Asunto(s)
Resorción Ósea/genética , Osteogénesis/genética , Osteoprotegerina/genética , Ligando RANK/genética , Animales , Apoptosis/genética , Resorción Ósea/patología , Resorción Ósea/terapia , Células Cultivadas , Cilios/genética , Cilios/efectos de la radiación , Citoesqueleto/genética , Campos Electromagnéticos , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Ratones , Osteoclastos/efectos de la radiación , Osteocitos/efectos de la radiación , Osteogénesis/efectos de la radiación , Transducción de Señal/genética
12.
Bioelectromagnetics ; 38(8): 602-612, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28741320

RESUMEN

Pulsed electromagnetic fields (PEMF) have been proven to be effective for promoting bone mass and regulating bone turnover both experimentally and clinically. However, the exact mechanisms for the regulation of PEMF on osteoclastogenesis as well as optical exposure parameters of PEMF on inhibiting osteoclastic activities and functions remain unclear, representing significant limitations for extensive scientific application of PEMF in clinics. In this study, RAW264.7 cells incubated with RANKL were exposed to 15 Hz PEMF (2 h/day) at various intensities (0.5, 1, 2, and 3 mT) for 7 days. We demonstrate that bone resorbing capacity was significantly decreased by 0.5 mT PEMF mainly by inhibiting osteoclast formation and maturation, but enhanced at 3 mT by promoting osteoclast apoptosis. Moreover, gene expression of RANK, NFATc1, TRAP, CTSK, BAX, and BAX/BCL-2 was significantly decreased by 0.5 mT PEMF, but increased by 3 mT. Our findings reveal a significant intensity window for low-intensity PEMF in regulating bone resorption with diverse nature for modulating osteoclastogenesis and apoptosis. This study not only enriches our basic knowledge for the regulation of PEMF in osteoclastogenesis, but also may lead to more efficient and scientific clinical application of PEMF in regulating bone turnover and inhibiting osteopenia/osteoporosis. Bioelectromagnetics. 38:602-612, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Apoptosis/efectos de la radiación , Resorción Ósea/patología , Campos Electromagnéticos , Osteoclastos/citología , Osteoclastos/efectos de la radiación , Ligando RANK/farmacología , Animales , Citoesqueleto/metabolismo , Citoesqueleto/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Regulación de la Expresión Génica/efectos de la radiación , Ratones , Osteogénesis/efectos de la radiación , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA