Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
2.
J Biochem Mol Toxicol ; 38(6): e23746, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38769694

RESUMEN

To identify the role of enterotoxin-related genes in colorectal cancer (CRC) development and progression. Upregulated differentially expressed genes shared by three out of five Gene Expression Omnibus (GEO) data sets were included to screen the key enterotoxin-induced oncogenes (EIOGs) according to criteria oncogene definition, enrichment, and protein-protein interaction (PPI) network analysis, followed by prognosis survival, immune infiltration, and protential drugs analyses was performed via integration of RNA-sequencing data and The Cancer Genome Atlas-derived clinical profiles. We screened nine common key EIOGs from at least three GEO data sets. A Cox proportional hazards regression models verified that more alive cases, decreased overall survival, and highest 4-year survival prediction in CRC patients with high-risk score. Protein tyrosine phosphatase receptor type F polypeptide-interacting protein alpha-4 (PPFIA4), STY11, SCN3B, and SPTBN5 were shared in the same PPI network. Immune infiltration results showed that SCN3B and synaptotagmin 11 expression were obviously associated with B cell, macrophage, myeloid dendritic cell, neutrophils, and T cell CD4+ and CD8+ in both colon adenocarcinoma and rectal adenocarcinoma. CHIR-99021, MLN4924, and YK4-279 were identified as the potential drugs for treatment. Finally, upregulated EIOGs genes PPFIA4 and SCN3B were found in colon adenocarcinoma and PPFIA4 and SCN3B were proved to promote cell proliferation and migration in vitro. We demonstrated here that EIOGs promoting a malignancy phenotype was related with poor survival and prognosis in CRC, which might be served as novel therapeutic targets in CRC management.


Asunto(s)
Neoplasias Colorrectales , Enterotoxinas , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Mapas de Interacción de Proteínas
3.
CNS Neurosci Ther ; 30(2): e14592, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38385622

RESUMEN

AIMS: Disturbances in the circadian rhythm are positively correlated with the processes of aging and related neurodegenerative diseases, which are also associated with brain iron accumulation. However, the role of brain iron in regulating the biological rhythm is poorly understood. In this study, we investigated the impact of brain iron levels on the spontaneous locomotor activity of mice with altered brain iron levels and further explored the potential mechanisms governing these effects in vitro. RESULTS: Our results revealed that conditional knockout of ferroportin 1 (Fpn1) in cerebral microvascular endothelial cells led to brain iron deficiency, subsequently resulting in enhanced locomotor activity and increased expression of clock genes, including the circadian locomotor output cycles kaput protein (Clock) and brain and muscle ARNT-like 1 (Bmal1). Concomitantly, the levels of period circadian regulator 1 (PER1), which functions as a transcriptional repressor in regulating biological rhythm, were decreased. Conversely, the elevated brain iron levels in APP/PS1 mice inhibited autonomous rhythmic activity. Additionally, our findings demonstrate a significant decrease in serum melatonin levels in Fpn1cdh5 -CKO mice compared with the Fpn1flox/flox group. In contrast, APP/PS1 mice with brain iron deposition exhibited higher serum melatonin levels than the WT group. Furthermore, in the human glioma cell line, U251, we observed reduced PER1 expression upon iron limitation by deferoxamine (DFO; iron chelator) or endogenous overexpression of FPN1. When U251 cells were made iron-replete by supplementation with ferric ammonium citrate (FAC) or increased iron import through transferrin receptor 1 (TfR1) overexpression, PER1 protein levels were increased. Additionally, we obtained similar results to U251 cells in mouse cerebellar astrocytes (MA-c), where we collected cells at different time points to investigate the rhythmic expression of core clock genes and the impact of DFO or FAC treatment on PER1 protein levels. CONCLUSION: These findings collectively suggest that altered iron levels influence the circadian rhythm by regulating PER1 expression and thereby modulating the molecular circadian clock. In conclusion, our study identifies the regulation of brain iron levels as a potential new target for treating age-related disruptions in the circadian rhythm.


Asunto(s)
Hierro , Melatonina , Ratones , Humanos , Animales , Hierro/metabolismo , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética
4.
J Neuroinflammation ; 21(1): 15, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195497

RESUMEN

BACKGROUND: Hepcidin is the master regulator of iron homeostasis. Hepcidin downregulation has been demonstrated in the brains of Alzheimer's disease (AD) patients. However, the mechanism underlying the role of hepcidin downregulation in cognitive impairment has not been elucidated. METHODS: In the present study, we generated GFAP-Cre-mediated hepcidin conditional knockout mice (HampGFAP cKO) to explore the effect of hepcidin deficiency on hippocampal structure and neurocognition. RESULTS: We found that the HampGFAP cKO mice developed AD-like brain atrophy and memory deficits. In particular, the weight of the hippocampus and the number of granule neurons in the dentate gyrus were significantly reduced. Further investigation demonstrated that the morphological change in the hippocampus of HampGFAP cKO mice was attributed to impaired neurogenesis caused by decreased proliferation of neural stem cells. Regarding the molecular mechanism, increased iron content after depletion of hepcidin followed by an elevated level of the inflammatory factor tumor necrosis factor-α accounted for the impairment of hippocampal neurogenesis in HampGFAP cKO mice. These observations were further verified in GFAP promoter-driven hepcidin knockdown mice and in Nestin-Cre-mediated hepcidin conditional knockout mice. CONCLUSIONS: The present findings demonstrated a critical role for hepcidin in hippocampal neurogenesis and validated the importance of iron and associated inflammatory cytokines as key modulators of neurodevelopment, providing insights into the potential pathogenesis of cognitive dysfunction and related treatments.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades del Sistema Nervioso Central , Animales , Humanos , Ratones , Atrofia , Encéfalo , Hepcidinas/genética , Hipocampo , Hierro , Trastornos de la Memoria/genética , Ratones Noqueados
5.
Soft Matter ; 20(5): 1089-1099, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38221881

RESUMEN

An exciting result is reported in this study where a polypropylene (PP) foam with a high open-cell content was achieved by constructing a thermally conductive network for the first time. PP and nano-graphite particles were used as substrate and filler, respectively, to prepare the PP-graphite (PP-G) composite foam by twin-screw blending, hot pressing, and supercritical CO2 foaming. The nano-graphite particles can effectively adjust the microstructure of the PP-G foam and achieve a high porosity. When the amount of nano-graphite is 10.0 wt%, the PP-G foam exhibits optimal sound absorption performance, compression resistance, heat insulation, and hydrophobic properties. In the human-sensitive frequency range of 1000-6000 Hz, the corresponding average SAC is above 0.9, and the internal tortuosity is 5.27. After 50 cycles of compression, the compressive stress is 980 kPa and the SAC loss is only 7.8%. This study also innovatively proposed a new strategy to achieve the simple and rapid preparation of open-cell PP foams by increasing the thermal conductivity of the foaming substrate.

6.
Cell Death Dis ; 15(1): 49, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218852

RESUMEN

Transmembrane serine protease 6 (Tmprss6) has been correlated with the occurrence and progression of tumors, but any specific molecular mechanism linking the enzyme to oncogenesis has remained elusive thus far. In the present study, we found that Tmprss6 markedly inhibited mouse neuroblastoma N2a (neuro-2a) cell proliferation and tumor growth in nude mice. Tmprss6 inhibits Smad1/5/8 phosphorylation by cleaving the bone morphogenetic protein (BMP) co-receptor, hemojuvelin (HJV). Ordinarily, phosphorylated Smad1/5/8 binds to Smad4 for nuclear translocation, which stimulates the expression of hepcidin, ultimately decreasing the export of iron through ferroportin 1 (FPN1). The decrease in cellular iron levels in neuro-2a cells with elevated Tmprss6 expression limited the availability of the metal forribo nucleotide reductase activity, thereby arresting the cell cycle prior to S phase. Interestingly, Smad4 promoted nuclear translocation of activating transcription factor 3 (ATF3) to activate the p38 mitogen-activated protein kinases signaling pathway by binding to ATF3, inducing apoptosis of neuro-2a cells and inhibiting tumor growth. Disruption of ATF3 expression significantly decreased apoptosis in Tmprss6 overexpressed neuro-2a cells. Our study describes a mechanism whereby Tmprss6 regulates the cell cycle and apoptosis. Thus, we propose Tmprss6 as a candidate target for inhibiting neuronal tumor growth.


Asunto(s)
Hepcidinas , Neoplasias , Animales , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Hierro/metabolismo , Ratones Desnudos
7.
CNS Neurosci Ther ; 30(2): e14394, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37545321

RESUMEN

AIMS: Adult hippocampal neurogenesis is an important player in brain homeostasis and its impairment participates in neurological diseases. Iron overload has emerged as an irreversible factor of brain aging, and is also closely related to degenerative disorders, including cognitive dysfunction. However, whether brain iron overload alters hippocampal neurogenesis has not been reported. We investigated the effect of elevated iron content on adult hippocampal neurogenesis and explored the underlying mechanism. METHODS: Mouse models with hippocampal iron overload were generated. Neurogenesis in hippocampus and expression levels of related molecules were assessed. RESULTS: Iron accumulation in hippocampus remarkably impaired the differentiation of neural stem cells, resulting in a significant decrease in newborn neurons. The damage was possibly attributed to iron-induced downregulation of proprotein convertase furin and subsequently decreased maturation of brain-derived neurotrophic factor (BDNF), thus contributing to memory decline and anxiety-like behavior of mice. Supportively, knockdown of furin indeed suppressed hippocampal neurogenesis, while furin overexpression restored the impairment. CONCLUSION: These findings demonstrated that iron overload damaged hippocampal neurogenesis likely via iron-furin-BDNF pathway. This study provides new insights into potential mechanisms on iron-induced neurotoxicity and the causes of neurogenesis injury and renders modulating iron homeostasis and furin expression as novel therapeutic strategies for treatment of neurological diseases.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Sobrecarga de Hierro , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Furina/metabolismo , Furina/farmacología , Hipocampo/metabolismo , Neurogénesis/fisiología , Hierro/metabolismo
8.
Antioxidants (Basel) ; 12(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38001850

RESUMEN

Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.

9.
Antioxidants (Basel) ; 12(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37760024

RESUMEN

Iron is essential for life, and the dysregulation of iron homeostasis can lead to severe pathological changes in the neurological system [...].

10.
Antioxidants (Basel) ; 12(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37372019

RESUMEN

The incidence of neurological diseases, such as Parkinson's disease, Alzheimer's disease and stroke, is increasing. An increasing number of studies have correlated these diseases with brain iron overload and the resulting oxidative damage. Brain iron deficiency has also been closely linked to neurodevelopment. These neurological disorders seriously affect the physical and mental health of patients and bring heavy economic burdens to families and society. Therefore, it is important to maintain brain iron homeostasis and to understand the mechanism of brain iron disorders affecting reactive oxygen species (ROS) balance, resulting in neural damage, cell death and, ultimately, leading to the development of disease. Evidence has shown that many therapies targeting brain iron and ROS imbalances have good preventive and therapeutic effects on neurological diseases. This review highlights the molecular mechanisms, pathogenesis and treatment strategies of brain iron metabolism disorders in neurological diseases.

11.
Antioxidants (Basel) ; 12(2)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36829936

RESUMEN

CHIR99021 is an aminopyrimidine derivative, which can efficiently inhibit the activity of glycogen synthesis kinase 3α (GSK-3α) and GSK-3ß. As an essential component of stem cell culture medium, it plays an important role in maintaining cell stemness. However, the mechanism of its role is not fully understood. In the present study, we first found that removal of CHIR99021 from embryonic stem cell culture medium reduced iron storage in mouse embryonic stem cells (mESCs). CHIR99021-treated Neuro-2a cells led to an upregulation of ferritin expression and an increase in intracellular iron levels, along with GSK3ß inhibition and Wnt/GSK-3ß/ß-catenin pathway activation. In addition, iron treatment activated the classical Wnt pathway by affecting the expression of ß-catenin in the Neuro-2a cells. Our data link the role of iron in the maintenance of cell stemness via the Wnt/GSK-3ß/ß-catenin signaling pathway, and identify intermediate molecules, including Steap1, Bola2, and Kdm6bos, which may mediate the upregulation of ferritin expression by CHIR99021. These findings reveal novel mechanisms of the maintenance of cell stemness and differentiation and provide a theoretical basis for the development of new strategies in stem cell treatment in disease.

12.
PLoS One ; 18(2): e0279318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36780490

RESUMEN

To observe the effect of magnesium ion on vascular function in rats after long-term exhaustive exercise. Forty male SD rats were divided into two groups, the control group (CON group, n = 20) and the exhaustive exercise group (EEE group, n = 20). Exhausted rats performed 1W adaptive swimming exercise (6 times/W, 15min/time), and then followed by 3W formal exhaustive exercise intervention. Hematoxylin and eosin (HE) staining was used to detect the morphological changes of rat thoracic aorta. The contents of interleukin-1 ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in serum of rats were determined by enzyme-linked immunosorbent assay (ELISA), and the contents of malondialdehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO) and endothelin 1 (ET-1) in serum of rats were determined by biochemical kit. Vascular ring test detects vascular function. Compared with the CON group, the smooth muscle layer of the EEE group became thicker, the cell arrangement was disordered, and the integrity of endothelial cells was destroyed; the serum Mg2+ in EEE group was decreased; the serum levels of IL-1ß, TNF-α, MDA and ROS in EEE group were significantly higher than those in the CON group (P are all less than 0.05); the serum NO content in EEE group was significantly decreased, and the ratio of NO/ET-1 was significantly decreased. In the exhaustion group, the vasoconstriction response to KCl was increased, and the relaxation response to Ach was weakened, while 4.8mM Mg2+ could significantly improve this phenomenon (P are all less than 0.01). The damage of vascular morphology and function in rats after exhaustion exercise may be related to the significant increase of serum IL-1ß, TNF-α, ROS, MDA and ET-1/NO ratio in rats after exhaustion exercise, while Mg2+ can significantly improve the vasomotor function of rats after exhaustion exercise.


Asunto(s)
Magnesio , Factor de Necrosis Tumoral alfa , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Células Endoteliales
13.
J Clin Transl Hepatol ; 11(2): 304-313, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-36643032

RESUMEN

Background and Aims: Chronic hepatitis B (CHB) can cause liver fibrosis and lead to cirrhosis and cancer. As the effectiveness of antiviral therapy to reverse liver fibrosis is limited, We aimed to evaluate the effect of An-Luo-Hua-Xian pill (ALHX) on fibrosis regression in CHB patients treated with entecavir (ETV). Methods: Treatment-naïve patients with CHB were randomly treated with ETV alone or combined with ALHX (ETV+ALHX) between October 1, 2013 and December 31, 2020. Demographic, laboratory, and liver histology data before and after 78 weeks of treatment were collected. The Ishak fibrosis score (F) was used and fibrosis regression required a decrease in F of ≥1 after treatment. Results: A total of 780 patients were enrolled, and 394 with a second liver biopsy after treatment were included in the per-protocol population, 132 in ETV group and 262 in ETV+ALHX group. After 78 weeks of treatment, the fibrosis regression rate in the ETV+ALHX group was significantly higher than that of the ETV group at baseline F≥3 patients: 124/211 (58.8%) vs. 45/98 (45.9%), p=0.035. The percentage of patients with a decreased liver stiffness measurement (LSM) was higher in the ETV+ALHX group: 156/211 (73.9%) vs. 62/98 (63.%), p=0.056. Logistic regression analysis showed that ETV combined with ALHX was associated with fibrosis regression [odds ratio (OR)=1.94, p=0.018], and a family history of hepatocellular carcinoma was on the contrary. (OR=0.41, p=0.031). Conclusions: ETV combined with ALHX increased liver fibrosis regression in CHB patients.

14.
Cell Mol Biol (Noisy-le-grand) ; 68(7): 160-164, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-36495502

RESUMEN

It has been noted that temozolomide resistance occurs in a number of malignancies, including glioma, although the underlying cause of this is unknown. The goal of the study in vivo investigation to show that increased CD147 expression in glioma cells is a factor in their resistance to the chemotherapy drug temozolomide. Proliferation assays, TUNEL assays, reactive oxygen species assays, protein degradation assays, immunohistochemistry, Western blotting, quantitative polymerase chain reactions, and tumorigenicity assays were all carried out. Using the human protein atlas databases, the expression levels of CD147 in different kinds of malignancies were examined. For immunohistochemistry, a total of 7, 12, 19, 15, and 16 glioma samples were taken from para-carcinoma tissue, representing stage I, stage II, stage III, and stage IV gliomas, respectively. The expression of CD147 proteins is correlated with the tumor's aggressiveness. Cell development was slowed by suppressing the expression of the CD147 protein. The expression of the CD147 protein contributed to the emergence of temozolomide resistance. Expression of the CD147 protein reduced mRNA expression. The growth-inhibitory impact of temozolomide on glioma cells was enhanced by the suppression of CD147 protein.  Nuclear factor E2-related factor 2 expression and CD147 protein expression showed a significant reciprocal connection with each other (p 0.0001, r2 = 0.3254). In glioma, resistance to temozolomide is due to overexpression of CD147 protein and induction of nuclear factor E2-related factor 2.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Inmunohistoquímica , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Apoptosis
15.
Stem Cell Res Ther ; 13(1): 534, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575558

RESUMEN

BACKGROUND: Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MECP2), is one of the most prevalent neurodevelopmental disorders in girls. However, the underlying mechanism of MECP2 remains largely unknown and currently there is no effective treatment available for RTT. METHODS: We generated MECP2-KO human embryonic stem cells (hESCs), and differentiated them into neurons and cerebral organoids to investigate phenotypes of MECP2 loss-of-function, potential therapeutic agents, and the underlying mechanism by transcriptome sequencing. RESULTS: We found that MECP2 deletion caused reduced number of hESCs-derived neurons and simplified dendritic morphology. Moreover, MECP2-KO cortical organoids exhibited fewer neural progenitor cells and neurons at day 60. Electrophysiological recordings showed that MECP2 deletion altered synaptic activity in organoids. Transcriptome analysis of organoids identified many genes in the PI3K-AKT pathway downregulated following MECP2 deletion. Treatment with either KW-2449 or VPA, small molecules for the activation of PI3K-AKT signaling pathway, alleviated neuronal deficits and transcriptome changes in MECP2-KO human neuronal models. CONCLUSIONS: These findings suggest that KW-2449 and VPA might be promising drugs for RTT treatment.


Asunto(s)
Células Madre Embrionarias Humanas , Síndrome de Rett , Femenino , Humanos , Células Madre Embrionarias Humanas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo
16.
Front Oncol ; 12: 963096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237302

RESUMEN

Background: Glioma is the most common primary malignant brain tumor with high mortality and poor prognosis. Hepcidin is a fascinating iron metabolism regulator. However, the prognostic value of hepcidin HAMP in gliomas and its correlation with immune cell infiltration remain unclear. Here, we comprehensively elucidate the prognostic value and potential role of hepcidin in gliomas. Methods: Hepcidin gene expression and clinical characteristics in glioma were analyzed using the CGGA, TCGA, Rembrandt and Gravendeel glioma databases. A survival analysis was conducted using Kaplan-Meier and Cox regression analyses. A gene set enrichment analysis (GSEA) was conducted to select the pathways significantly enriched for hepcidin associations. The correlations between hepcidin and immune cell infiltration and immunotherapy were analyzed using network platforms such as CIBERSORT and TIMER. Results: In glioma tissues, the expression of hepcidin was significantly increased. High hepcidin expression is related to grade, age, PRS type, IDH mutation, chemotherapy status and 1p19q codeletion status, which significantly indicates the poor prognosis of glioma patients. Hepcidin can be used as an independent prognostic factor for glioma through the multivariate COX regression analysis. The results of Gene Ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG) and gene set enrichment analysis (GSEA) indicated that hepcidin was involved in the immune response. In addition, hepcidin expression was positively correlated with the degree of immune cell infiltration, the expression of various immune cell markers and the efficacy of immunotherapy. Conclusion: Our results indicate that hepcidin can be used as a candidate biomarker to judge the prognosis and immune cell invasion of gliomas.

17.
Cell Death Dis ; 13(8): 667, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915080

RESUMEN

Brain iron dysregulation associated with aging is closely related to motor and cognitive impairments in neurodegenerative diseases. The regulation of iron traffic at the blood-brain barrier (BBB) is crucial to maintain brain iron homeostasis. However, the specific mechanism has not been clarified in detail. Using various conditional gene knockout and overexpression mice, as well as cell co-culture of astrocyte and bEND.3 in the transwell, we found that astrocyte hepcidin knockdown increased the expression of ferroportin 1 (FPN1) of brain microvascular endothelial cells (BMVECs), and that it also induced brain iron overload and cognitive decline in mice. Moreover, BMVECs FPN1 knockout decreased iron contents in the cortex and hippocampus. Furthermore, hepcidin regulates the level of FPN1 of BMVECs with conditional gene overexpression in vivo and in vitro. Our results revealed that astrocytes responded to the intracellular high iron level and increased the secretion of hepcidin, which in turn diminished iron uptake at BBB from circulation through directly regulating FPN1 of BMVECs. Our results demonstrate that FPN1 of BMVECs is a gateway for iron transport into the brain from circulation, and the controller of this gateway is hepcidin secreted by astrocyte at its endfeet through physical contact with BMVECs. This regulation is indeed the major checkpoint for iron transport from the blood circulation to the brain. This study delineates the pathway and regulation of iron entry into the brain, providing potential therapeutic targets for iron dysregulation-related neurological diseases.


Asunto(s)
Hepcidinas , Hierro , Animales , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Proteínas de Transporte de Catión , Células Endoteliales/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro/metabolismo , Ratones
18.
Transl Neurodegener ; 11(1): 39, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35996194

RESUMEN

Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.


Asunto(s)
Furina , Enfermedades Neurodegenerativas , Animales , Furina/genética , Furina/fisiología , Humanos , Proproteína Convertasas/genética
19.
Life (Basel) ; 12(7)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35888113

RESUMEN

Caffeine is well-known as a psychostimulant, and it can also be beneficial in numerous diseases such as diabetes and different types of cancer. Previous studies have shown that caffeine can have a protective role in bacterial infection-induced inflammation and hyperoxia-mediated pulmonary inflammation. Hepcidin, which is regulated by the IL-6/STAT3 inflammation pathway, is a peptide hormone that maintains systemic iron homeostasis. We hypothesized that caffeine's effects on inflammation may also influence hepcidin production and therefore systemic iron metabolism. To this end, we treated 2-month-old mice with caffeine by daily intragastric administration for 7 days, administering intraperitoneal LPS after the final caffeine treatment. Twelve hours after LPS treatment the mice were euthanized, and tissues were collected. We found that caffeine decreased hepatic hepcidin expression and attenuated LPS-induced hepatic hepcidin overexpression. IL-6 expression and STAT3 phosphorylation were also reduced upon caffeine administration. Additionally, hepatic and splenic FPN1 levels increased after caffeine treatment, leading to lower iron levels in liver and spleen tissues and higher iron levels in serum. Caffeine also prevented the increase in spleen weight and decrease in body weight after LPS treatment. Together, our findings suggest that caffeine decreases hepcidin expression via inhibiting inflammation and the activation of the IL-6/STAT3 pathway, thus presenting an attractive, potential therapeutic for the treatment of anemia of inflammation.

20.
Pharmacol Res Perspect ; 10(4): e00991, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35892277

RESUMEN

The relationship between cardiovascular diseases and iron disorders has gained increasing attention; however, the effects of hypotensive drugs on iron metabolic alterations in hypertension are not well understood. The purpose of this study was to investigate iron metabolic changes after prazosin treatment of spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats. Our second objective was to examine the effects of hypertension and anti-hypertensive drugs on bone formation and resorption. SHRs and WKY rats were randomized into either prazosin-treated groups (WKY + PZ and SHR + PZ) or untreated groups (WKY and SHR). After 7 days of intragastric prazosin administration, the rats were sacrificed for analysis; blood samples and organs (the duodenum, liver, kidneys, spleen, and femur) were collected. Both WKY + PZ and SHR groups exhibited iron deficiency in the serum and liver. Prazosin increased the iron levels in the bone tissue of SHRs. Prazosin stimulated the expression of hepcidin mRNA in the liver of SHRs and inhibited the expression of this iron-regulatory hormone in WKY rats. FPN1 expression in the duodenum was increased significantly in SHRs, however markedly decreased after prazosin treatment. The expression of TLR4 and Ctsk was enhanced in the bone tissue of SHRs, whereas CLC-7 expression was inhibited. Both hypotension and hypertension can lead to iron deficiency. Treatment with prazosin restored iron homeostasis in SHRs. The inverse impacts of prazosin on hepatic hepcidin expression in SHRs versus WKY rats indicates differing iron regulatory mechanisms between hypertensive and normal animals. The osteoclast activity was found to be enhanced in SHRs. Further study is needed to address whether the changes in osteoblast and osteoclast activity in SHRs correlates with the effects on iron metabolism.


Asunto(s)
Hipertensión , Hierro , Prazosina , Animales , Hepcidinas/genética , Hipertensión/tratamiento farmacológico , Hierro/metabolismo , Prazosina/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA