Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Nanobiotechnology ; 20(1): 311, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794602

RESUMEN

The development of optical organic nanoparticles (NPs) is desirable and widely studied. However, most organic dyes are water-insoluble such that the derivatization and modification of these dyes are difficult. Herein, we demonstrated a simple platform for the fabrication of organic NPs designed with emissive properties by loading ten different organic dyes (molar masses of 479.1-1081.7 g/mol) into water-soluble polymer nanosponges composed of poly(styrene-alt-maleic acid) (PSMA). The result showed a substantial improvement over the loading of commercial dyes (3.7-50% loading) while preventing their spontaneous aggregation in aqueous solutions. This packaging strategy includes our newly synthesized organic dyes (> 85% loading) designed for OPVs (242), DSSCs (YI-1, YI-3, YI-8), and OLEDs (ADF-1-3, and DTDPTID) applications. These low-cytotoxicity organic NPs exhibited tunable fluorescence from visible to near-infrared (NIR) emission for cellular imaging and biological tracking in vivo. Moreover, PSMA NPs loaded with designed NIR-dyes were fabricated, and photodynamic therapy with these dye-loaded PSMA NPs for the photolysis of cancer cells was achieved when coupled with 808 nm laser excitation. Indeed, our work demonstrates a facile approach for increasing the biocompatibility and stability of organic dyes by loading them into water-soluble polymer-based carriers, providing a new perspective of organic optoelectronic materials in biomedical theranostic applications.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Colorantes , Polímeros , Agua
2.
J Chem Phys ; 144(1): 014303, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26747802

RESUMEN

We present a measurement of the time-resolved photoelectron kinetic energy spectrum of ethylene using 156 nm and 260 nm laser pulses. The 156 nm pulse first excites ethylene to the (1)B1u (ππ(∗)) electronic state where 260 nm light photoionizes the system to probe the relaxation dynamics with sub-30 fs resolution. Recent ab initio calculations by Mori et al. [J. Phys. Chem. A 116, 2808-2818 (2012)] have predicted an ultrafast population transfer from the initially excited state to a low-lying Rydberg state during the relaxation of photoexcited ethylene. The measured photoelectron kinetic energy spectrum reveals wave packet motion on the valence state and shows indications that the low-lying π3s Rydberg state is indeed transiently populated via internal conversion following excitation to the ππ(∗) state, supporting the theoretical predictions.

3.
Opt Express ; 19(24): 23689-97, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22109395

RESUMEN

Terahertz (THz) radiation can be generated more efficiently from a low-temperature-grown GaAs (LT-GaAs) photoconductive (PC) antenna by considering the two-photon absorption (TPA) induced photo-carrier in the photoconductor. A rate-equation-based approach using the Drude-Lorentz model taking into account the band-diagram of LT-GaAs is used for the theoretical analysis. The use of transform-limited pulses at the PC antenna is critical experimentally. Previously unnoticed THz pulse features and anomalously increasing THz radiation power rather than saturation were observed. These are in good agreement with the theoretical predictions. The interplay of intensity dependence and dynamics of generation of photoexcited carriers by single-photon absorption and TPA for THz emission is discussed.


Asunto(s)
Rayos Láser , Iluminación/instrumentación , Transductores , Diseño Asistido por Computadora , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Fotones , Radiación Terahertz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA